36 resultados para Automated Guideways.
Resumo:
The study evaluated sources of within- and between-subject variability in standard white-on-white (W-W) perimetry and short-wavelength automated perimetry (SWAP). The Influence of staircase strategy on the fatigue effect in W-W perimetry was investigated for a 4 dB single step, single reversal strategy; a variable step size, single reversal dynamic strategy; and the standard 4-2 dB double reversal strategy. The fatigue effect increased as the duration of the examination Increased and was greatest in the second eye for all strategies. The fatigue effect was lowest for the 4dB strategy, which exhibited the shortest examination time and was greatest for the 4-2 dB strategy, which exhibited the longest examination time. Staircase efficiency was lowest for the 4 dB strategy and highest for the dynamic strategy which thus offers a reduced examination time and low inter-subject variability. The normal between-subject variability of SWAP was determined for the standard 4-2 dB double reversal strategy and the 3 dB single reversal FASTPAC strategy and compared to that of W-W perimetry, The decrease in sensitivity with Increase in age was greatest for SWAP. The between-subject variability of SWAP was greater than W-W perimetry. Correction for the Influence of ocular media absorption reduced the between-subject variability of SWAP, The FASTPAC strategy yielded the lowest between-subject variability In SWAP, but the greatest between-subject variability In WoW perimetry. The greater between-subject variability of SWAP has profound Implications for the delineation of visual field abnormality, The fatigue effect for the Full Threshold strategy in SWAP was evaluated with conventional opaque, and translucent occlusion of the fellow eye. SWAP exhibited a greater fatigue effect than W-W perimetry. Translucent occlusion reduced the between-subject variability of W-W perimetry but Increased the between-subject variability of SWAP. The elevation of sensitivity was greater with translucent occlusion which has implications for the statistical analysis of W-W perimetry and SWAP. The influence of age-related cataract extraction and IOL implantation upon the visual field derived by WoW perimetry and SWAP was determined. Cataract yielded a general reduction In sensitivity which was preferentially greater in SWAP, even after the correction of SWAP for the attenuation of the stimulus by the ocular media. There was no correlation between either backward or forward light scatter and the magnitude of the attenuation of W-W or SWAP sensitivity. The post-operative mean deviation in SWAP was positive and has ramifications for the statistical Interpretation of SWAP. Short-wavelength-sensitive pathway isolation was assessed as a function of stimulus eccentricity using the two-colour Increment threshold method. At least 15 dB of SWS pathway Isolation was achieved for 440 nm, 450 nm and 460 nm stimuli at a background luminance of 100 cdm-2, There was a slight decrease In SWS pathway Isolation for all stimulus wavelengths with increasing eccentricity which was not of clinical significance. Adopting a 450 nm stimulus may reduce between-subject variability In SWAP due to a reduction In ocular media absorption and macular pigment absorption.
Resumo:
The Octopus Automated Perimeter was validated in a comparative study and found to offer many advantages in the assessment of the visual field. The visual evoked potential was investigated in an extensive study using a variety of stimulus parameters to simulate hemianopia and central visual field defects. The scalp topography was recorded topographically and a technique to compute the source derivation of the scalp potential was developed. This enabled clarification of the expected scalp distribution to half field stimulation using different electrode montages. The visual evoked potential following full field stimulation was found to be asymmetrical around the midline with a bias over the left occiput particularly when the foveal polar projections of the occipital cortex were preferentially stimulated. The half field response reflected the distribution asymmetry. Masking of the central 3° resulted in a response which was approximately symmetrical around the midline but there was no evidence of the PNP-complex. A method for visual field quantification was developed based on the neural representation of visual space (Drasdo and Peaston 1982) in an attempt to relate visual field depravation with the resultant visual evoked potentials. There was no form of simple, diffuse summation between the scalp potential and the cortical generators. It was, however, possible to quantify the degree of scalp potential attenuation for M-scaled full field stimuli. The results obtained from patients exhibiting pre-chiasmal lesions suggested that the PNP-complex is not scotomatous in nature but confirmed that it is most likely to be related to specific diseases (Harding and Crews 1982). There was a strong correlation between the percentage information loss of the visual field and the diagnostic value of the visual evoked potential in patients exhibiting chiasmal lesions.
Resumo:
Automated perimetry has made viable a rapid threshold examination of the visual field and has reinforced the role of perimetry in the diagnostic procedure. The aim of this study was twofold: to isolate the influence of certain extraneous factors on the sensitivity gradient, since these might limit the early detection and accurate monitoring of visual field loss and to investigate the efficacy of certain novel combinations of stimulus parameters in the detection of early visual field loss. The work was carried out with particular reference to glaucoma and to ocular hypertension. The effects of media opacities on the visual field were assessed by forward intraocular light scatter (n= 15) and were found to mask diffuse glaucomatous visual field loss and underestimate focal loss. Correction of the visual field indices for the effects of forward intraocular light scatter (n= 26) showed the focal losses to be, in reality, unaffected. Measurements of back scatter underestimated forward intraocular light scatter (n= 60) and the resultant depression of the visual field. Perimetric sensitivity improved with patient learning (n= 25) and exhibited eccentricity- and depth-dependency effects whereby improvements in sensitivity were greatest for peripheral areas of the field and for those areas which initially demonstrated the lowest sensitivity. The effects of practice were retained over several months (n= 16). Perimetric sensitivity decreased during prolonged examination due to fatigue effects (n&61 19); these demonstrated a similar eccentricity-dependency, being greatest for eccentricities beyond 30o. Mean sensitivities over the range of adaptation levels employed obeyed the Weber-Fechner law (n= 10) and, as would be expected, were independent of pupil size. No relationship was found between short-term fluctuation and adaptation level. Detection of diffuse glaucomatous visual field loss was facilitated using a size III stimulus of duration 200msec at an adaptation level of 31.5asb, compared with a size III stimulus of duration 100msec at an adaptation level of 4asb (n= 20). In a pilot study (n= 10), temporal summation was found to be higher in glaucomatous patients compared with age-matched controls, although the difference was not statistically significant.
Resumo:
INTAMAP is a Web Processing Service for the automatic spatial interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the Open Geospatial Consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an integrated, open source solution. The system couples an open-source Web Processing Service (developed by 52°North), accepting data in the form of standardised XML documents (conforming to the OGC Observations and Measurements standard) with a computing back-end realised in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a markup language designed to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropy, extreme values, and data with known error distributions. Besides a fully automatic mode, the system can be used with different levels of user control over the interpolation process.
Resumo:
Epitopes mediated by T cells lie at the heart of the adaptive immune response and form the essential nucleus of anti-tumour peptide or epitope-based vaccines. Antigenic T cell epitopes are mediated by major histocompatibility complex (MHC) molecules, which present them to T cell receptors. Calculating the affinity between a given MHC molecule and an antigenic peptide using experimental approaches is both difficult and time consuming, thus various computational methods have been developed for this purpose. A server has been developed to allow a structural approach to the problem by generating specific MHC:peptide complex structures and providing configuration files to run molecular modelling simulations upon them. A system has been produced which allows the automated construction of MHC:peptide structure files and the corresponding configuration files required to execute a molecular dynamics simulation using NAMD. The system has been made available through a web-based front end and stand-alone scripts. Previous attempts at structural prediction of MHC:peptide affinity have been limited due to the paucity of structures and the computational expense in running large scale molecular dynamics simulations. The MHCsim server (http://igrid-ext.cryst.bbk.ac.uk/MHCsim) allows the user to rapidly generate any desired MHC:peptide complex and will facilitate molecular modelling simulation of MHC complexes on an unprecedented scale.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
The G-protein coupled receptor (GPCR) superfamily fulfils various metabolic functions and interacts with a diverse range of ligands. There is a lack of sequence similarity between the six classes that comprise the GPCR superfamily. Moreover, most novel GPCRs found have low sequence similarity to other family members which makes it difficult to infer properties from related receptors. Many different approaches have been taken towards developing efficient and accurate methods for GPCR classification, ranging from motif-based systems to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of their amino acid sequences. This review describes the inherent difficulties in developing a GPCR classification algorithm and includes techniques previously employed in this area.
Resumo:
The 5-HT7 receptor is linked with various CNS disorders. Using an automated solution phase synthesis a combinatorial library of 384 N-substituted N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]-arylsulfonamides was prepared with 24 chemically diverse amines 1-24 and 16 sulfonyl chlorides A-P. The chemical library of alkylated sulfonamides was evaluated in a receptor binding assay with [3]H-5-CT as ligand. The key synthetic step was the alkylation of a sulfonamide with iodide E, which was prepared from butanediol in 4 synthetic steps. The target compounds 1A, 1B .....24A ... 24P were purified by solvent extraction on a Teacan liquid handling system. Sulfonamide J20, B23, D23, G23, G23, J23 , I24 and O24 displayed a binding affinity IC50 between 100 nM and 10 nM. The crystalline J20 (IC50=39 nM) and O24 (IC50=83 nM) were evaluated further in the despair swimming test and the tail suspension assay. A significant antidepressant activity was found in mice of a greater magnitude than imipramine and fluoxetine at low doses. © 2006 Bentham Science Publishers Ltd.
Resumo:
Resource Space Model is a kind of data model which can effectively and flexibly manage the digital resources in cyber-physical system from multidimensional and hierarchical perspectives. This paper focuses on constructing resource space automatically. We propose a framework that organizes a set of digital resources according to different semantic dimensions combining human background knowledge in WordNet and Wikipedia. The construction process includes four steps: extracting candidate keywords, building semantic graphs, detecting semantic communities and generating resource space. An unsupervised statistical language topic model (i.e., Latent Dirichlet Allocation) is applied to extract candidate keywords of the facets. To better interpret meanings of the facets found by LDA, we map the keywords to Wikipedia concepts, calculate word relatedness using WordNet's noun synsets and construct corresponding semantic graphs. Moreover, semantic communities are identified by GN algorithm. After extracting candidate axes based on Wikipedia concept hierarchy, the final axes of resource space are sorted and picked out through three different ranking strategies. The experimental results demonstrate that the proposed framework can organize resources automatically and effectively.©2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
Many software engineers have found that it is difficult to understand, incorporate and use different formal models consistently in the process of software developments, especially for large and complex software systems. This is mainly due to the complex mathematical nature of the formal methods and the lack of tool support. It is highly desirable to have software models and their related software artefacts systematically connected and used collaboratively, rather than in isolation. The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. This paper proposed a framework that allows users to interconnect the knowledge about formal software models and other related documents using the semantic technology. We first propose a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them. We then develop a Semantic Web environment for representing and sharing formal Z/OZ models. A method with prototype tool is presented to enhance semantic query to software models and other artefacts. © 2014.