21 resultados para Audio-visual content classification
Resumo:
Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. © 2014 The Author.
Resumo:
Visual sensitivity, defined as the “susceptibility toward experiencing seizures, which are triggered by the physical characteristics of visual stimuli and not by their perceptual properties,”1 can manifest in the context of various forms of generalized or focal, idiopathic or symptomatic epilepsies.2 We report a patient with no family or personal history of epilepsy who presented episodes of loss of consciousness exclusively triggered by visual stimuli unrelated to their emotional content, in which we have documented EEG-EKG characteristics suggestive of a neurally mediated syncope.
Resumo:
Purpose - The purpose of this paper is to assess high-dimensional visualisation, combined with pattern matching, as an approach to observing dynamic changes in the ways people tweet about science topics. Design/methodology/approach - The high-dimensional visualisation approach was applied to three scientific topics to test its effectiveness for longitudinal analysis of message framing on Twitter over two disjoint periods in time. The paper uses coding frames to drive categorisation and visual analytics of tweets discussing the science topics. Findings - The findings point to the potential of this mixed methods approach, as it allows sufficiently high sensitivity to recognise and support the analysis of non-trending as well as trending topics on Twitter. Research limitations/implications - Three topics are studied and these illustrate a range of frames, but results may not be representative of all scientific topics. Social implications - Funding bodies increasingly encourage scientists to participate in public engagement. As social media provides an avenue actively utilised for public communication, understanding the nature of the dialog on this medium is important for the scientific community and the public at large. Originality/value - This study differs from standard approaches to the analysis of microblog data, which tend to focus on machine driven analysis large-scale datasets. It provides evidence that this approach enables practical and effective analysis of the content of midsize to large collections of microposts.
Resumo:
Aim: Identify the incidence of vitreomacular traction (VMT) and frequency of reduced vision in the absence of other coexisting macular pathology using a pragmatic classification system for VMT in a population of patients referred to the hospital eye service. Methods: A detailed survey of consecutive optical coherence tomography (OCT) scans was done in a high-throughput ocular imaging service to ascertain cases of vitreomacular adhesion (VMA) and VMT using a departmental classification system. Analysis was done on the stages of traction, visual acuity, and association with other macular conditions. Results: In total, 4384 OCT scan episodes of 2223 patients were performed. Two hundred and fourteen eyes had VMA/VMT, with 112 eyes having coexisting macular pathology. Of 102 patients without coexisting pathology, 57 patients had VMT grade between 2 and 8, with a negative correlation between VMT grade and number of Snellen lines (r= -0.61717). There was a distinct cutoff in visual function when VMT grade was higher than 4 with the presence of cysts and sub retinal separation and breaks in the retinal layers. Conclusions: VMT is a common encounter often associated with other coexisting macular pathology. We estimated an incidence rate of 0.01% of VMT cases with reduced vision and without coexisting macular pathology that may potentially benefit from intervention. Grading of VMT to select eyes with cyst formation as well as hole formation may be useful for targeting patients who are at higher risk of visual loss from VMT.
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper. © 2010 IEEE.