43 resultados para Attentional visual fields


Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE - To compare posterior vitreous chamber shape in myopia to that in emmetropia. METHODS - Both eyes of 55 adult subjects were studied, 27 with emmetropia (MSE =-0.55; <+0.75D; mean +0.09 ±0.36D) and 28 with myopia (MSE -5.87 ±2.31D). Cycloplegic refraction was measured with a Shin Nippon autorefractor and anterior chamber depth and axial length with a Zeiss IOLMaster. Posterior vitreous chamber shapes were determined from T2-weighted MRI (3-Tesla) using procedures previously reported by our laboratory. 3-D surface model coordinates were assigned to nasal, temporal, superior and inferior quadrants and plotted in 2-D to illustrate the composite shape of respective quadrants posterior to the second nodal point. Spherical analogues of chamber shape were constructed to compare relative sphericity between refractive groups and quadrants. RESULTS - Differences in shape occurred in the region posterior to points of maximum globe width and were thus in general accord with an equatorial model of myopic expansion. Shape in emmetropia is categorised distinctly as that of an oblate ellipse and in myopia as an oblate ellipse of significantly less degree such that it approximates to a sphere. There was concordance between shape and retinotopic projection of respective quadrants into right, left, superior and inferior visual fields. CONCLUSIONS - The transition in shape from oblate ellipse to sphere with axial elongation supports the hypothesis that myopia may be a consequence of equatorial restriction associated with biomechanical anomalies of the ciliary apparatus. The synchronisation of quadrant shapes with retinotopic projection suggests that binocular growth is coordinated by processes that operate beyond the optic chiasm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate whether regional long-term changes in peripapillary retinal flow, measured by scanning laser Doppler flowmetry (SLDF), occur in patients with primary open angle glaucoma (POAG). Methods: 31 healthy volunteers (mean age: 65 8.3 years) and 33 POAG patients (mean age: 71.2 7.6 years) were followed up every 4 months for 16 months. Using SLDF, three images of the superior and inferior optic nerve head were obtained for each subject. A 1010-pixel frame was used to measure blood flow, volume and velocity in the four quadrants of the peripapillary retina. Central 24-2 visual field testing was carried out at each visit. Repeated measures analysis of covariance was used to assess change over time between the normal and POAG groups for the SLDF parameters. Univariate linear regression analysis for mean deviation and glaucoma change probability (GCP) analysis were used to identify visual field progression. Results: Blood volume, flow and velocity measured in the inferior nasal quadrant of the peripapillary retina decreased significantly over time for the POAG group compared to the normal group (p=0.0073, 0.0097, 0.0095 respectively). Overall, 2 glaucoma patients showed a significantly deteriorating MD slope, while 7 patients showed visual field progression with GPA. All of the patients progressing with GPA, showed change in the superior hemifield and, of those, 14% showed change in the inferior hemifield. Conclusion: Glaucoma patients showed a decrease in blood flow, volume and velocity in the inferior nasal peripapillary retina. A regional variation in microvascular retinal capillary blood flow may provide insight into the pathogenesis of glaucomatous optic neuropathy. Keywords: 331 blood supply • 554 retina • 624 visual fields

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: To determine the visual outcome following initiation of brimonidine therapy in glaucoma. Methods: 16 newly diagnosed previously untreated glaucoma patients were randomly assigned to either timalal 0.5% or brimanidine 0.2%. Visual acuity, contrast sensitivity (CS), visual fields, intraocular pressure (IOP), blaad pressure, and heart rate were evaluated at baseline and after 3 months. Results: IOP reduction was similar far both groups (p<0.05). Brimanidine improved CS; in the right eye at 6 and 12 cpd (p = 0.043, p = 0.017); in the left eye at 3 and 12 cpd (p = 0.044, p = 0.046). Timolol reduced CS at 18 cpd in the right eye (p = 0.041). There was no change in any other measured parameters. Conclusion: Glaucoma patients exhibit improved CS an initiation of brimanidine therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top–down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2–10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top–down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2–10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of attentional modulation on activity within the human visual cortex were investigated using magnetoencephalography. Chromatic sinusoidal stimuli were used to evoke activity from the occipital cortex, with attention directed either toward or away from the stimulus using a bar-orientation judgment task. For five observers, global magnetic field power was plotted as a function of time from stimulus onset. The major peak of each function occurred at about 120 ms latency and was well modeled by a current dipole near the calcarine sulcus. Independent component analysis (ICA) on the non-averaged data for each observer also revealed one component of calcarine origin, the location of which matched that of the dipolar source determined from the averaged data. For two observers, ICA revealed a second component near the parieto-occipital sulcus. Although no effects of attention were evident using standard averaging procedures, time-varying spectral analyses of single trials revealed that the main effect of attention was to alter the level of oscillatory activity. Most notably, a sustained increase in alpha-band (7-12 Hz) activity of both calcarine and parieto-occipital origin was evident. In addition, calcarine activity in the range of 13-21 Hz was enhanced, while calcarine activity in the range of 5-6 Hz was reduced. Our results are consistent with the hypothesis that attentional modulation affects neural processing within the calcarine and parieto-occipital cortex by altering the amplitude of alpha-band activity and other natural brain rhythms. © 2003 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A substantial amount of evidence has been collected to propose an exclusive role for the dorsal visual pathway in the control of guided visual search mechanisms, specifically in the preattentive direction of spatial selection [Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research and Reviews, 30, 66-76; Vidyasagar, T. R. (2001). From attentional gating in macaque primary visual cortex to dyslexia in humans. Progress in Brain Research, 134, 297-312]. Moreover, it has been suggested recently that the dorsal visual pathway is specifically involved in the spatial selection and sequencing required for orthographic processing in visual word recognition. In this experiment we manipulate the demands for spatial processing in a word recognition, lexical decision task by presenting target words in a normal spatial configuration, or where the constituent letters of each word are spatially shifted relative to each other. Accurate word recognition in the Shifted-words condition should demand higher spatial encoding requirements, thereby making greater demands on the dorsal visual stream. Magnetoencephalographic (MEG) neuroimaging revealed a high frequency (35-40 Hz) right posterior parietal activation consistent with dorsal stream involvement occurring between 100 and 300 ms post-stimulus onset, and then again at 200-400 ms. Moreover, this signal was stronger in the shifted word condition, compared to the normal word condition. This result provides neurophysiological evidence that the dorsal visual stream may play an important role in visual word recognition and reading. These results further provide a plausible link between early stage theories of reading, and the magnocellular-deficit theory of dyslexia, which characterises many types of reading difficulty. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The practicality of recording visual evoked magnetic fields in 100 subjects 15-87 yr of age using a single channel d.c. SQUID second order gradiometer in an unshielded environment was investigated. The pattern reversal response showed a major positive component between 90 and 120 msec (P100M) while the response to flash produced a major positive component between 90 and 140 msec (P2M). Latency norms of the P100M were more variable than the corresponding P100 and P2 visual evoked potentials. The latency of the P100M may show a steep increase with age in most subjects after about 55 yr whereas only a small trend of latency with age was detected for the flash P2M.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both the eye and brain generate magnetic fields when stimulated with a variety of visual cues. These magnetic fields can be measured with a magnetometer; a device which uses superconducting technology. The application of this technique to measuring the magnetooculogram, magnetoretinogram and visually evoked fields from the brain is described. So far the main use of this technique has been in pure research. Its potential for diagnosing ocular and neurological diseases is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual perception is dependent not only on low-level sensory input but also on high-level cognitive factors such as attention. In this paper, we sought to determine whether attentional processes can be internally monitored for the purpose of enhancing behavioural performance. To do so, we developed a novel paradigm involving an orientation discrimination task in which observers had the freedom to delay target presentation--by any amount required--until they judged their attentional focus to be complete. Our results show that discrimination performance is significantly improved when individuals self-monitor their level of visual attention and respond only when they perceive it to be maximal. Although target delay times varied widely from trial-to-trial (range 860 ms-12.84 s), we show that their distribution is Gaussian when plotted on a reciprocal latency scale. We further show that the neural basis of the delay times for judging attentional status is well explained by a linear rise-to-threshold model. We conclude that attentional mechanisms can be self-monitored for the purpose of enhancing human decision-making processes, and that the neural basis of such processes can be understood in terms of a simple, yet broadly applicable, linear rise-to-threshold model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-level cognitive factors, including self-awareness, are believed to play an important role in human visual perception. The principal aim of this study was to determine whether oscillatory brain rhythms play a role in the neural processes involved in self-monitoring attentional status. To do so we measured cortical activity using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while participants were asked to self-monitor their internal status, only initiating the presentation of a stimulus when they perceived their attentional focus to be maximal. We employed a hierarchical Bayesian method that uses fMRI results as soft-constrained spatial information to solve the MEG inverse problem, allowing us to estimate cortical currents in the order of millimeters and milliseconds. Our results show that, during self-monitoring of internal status, there was a sustained decrease in power within the 7-13 Hz (alpha) range in the rostral cingulate motor area (rCMA) on the human medial wall, beginning approximately 430 msec after the trial start (p < 0.05, FDR corrected). We also show that gamma-band power (41-47 Hz) within this area was positively correlated with task performance from 40-640 msec after the trial start (r = 0.71, p < 0.05). We conclude: (1) the rCMA is involved in processes governing self-monitoring of internal status; and (2) the qualitative differences between alpha and gamma activity are reflective of their different roles in self-monitoring internal states. We suggest that alpha suppression may reflect a strengthening of top-down interareal connections, while a positive correlation between gamma activity and task performance indicates that gamma may play an important role in guiding visuomotor behavior. © 2013 Yamagishi et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavioural studies on normal and brain-damaged individuals provide convincing evidence that the perception of objects results in the generation of both visual and motor signals in the brain, irrespective of whether or not there is an intention to act upon the object. In this paper we sought to determine the basis of the motor signals generated by visual objects. By examining how the properties of an object affect an observer's reaction time for judging its orientation, we provide evidence to indicate that directed visual attention is responsible for the automatic generation of motor signals associated with the spatial characteristics of perceived objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'attentional blink' (AB) reflects a limitation in the ability to identify multiple items in a stream of rapidly presented information. Repetitive transcranial magnetic stimulation (rTMS), applied to a site over the right posterior parietal cortex, reduced the magnitude of the AB to visual stimuli, whilst no effect of rTMS was found when stimulation took place at a control site. The data confirm that the posterior parietal cortex may play a critical role in temporal as well as spatial aspects of visual attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edge blur is an important perceptual cue, but how does the visual system encode the degree of blur at edges? Blur could be measured by the width of the luminance gradient profile, peak ^ trough separation in the 2nd derivative profile, or the ratio of 1st-to-3rd derivative magnitudes. In template models, the system would store a set of templates of different sizes and find which one best fits the `signature' of the edge. The signature could be the luminance profile itself, or one of its spatial derivatives. I tested these possibilities in blur-matching experiments. In a 2AFC staircase procedure, observers adjusted the blur of Gaussian edges (30% contrast) to match the perceived blur of various non-Gaussian test edges. In experiment 1, test stimuli were mixtures of 2 Gaussian edges (eg 10 and 30 min of arc blur) at the same location, while in experiment 2, test stimuli were formed from a blurred edge sharpened to different extents by a compressive transformation. Predictions of the various models were tested against the blur-matching data, but only one model was strongly supported. This was the template model, in which the input signature is the 2nd derivative of the luminance profile, and the templates are applied to this signature at the zero-crossings. The templates are Gaussian derivative receptive fields that covary in width and length to form a self-similar set (ie same shape, different sizes). This naturally predicts that shorter edges should look sharper. As edge length gets shorter, responses of longer templates drop more than shorter ones, and so the response distribution shifts towards shorter (smaller) templates, signalling a sharper edge. The data confirmed this, including the scale-invariance implied by self-similarity, and a good fit was obtained from templates with a length-to-width ratio of about 1. The simultaneous analysis of edge blur and edge location may offer a new solution to the multiscale problem in edge detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the relationship between attentional processing mediated by visual magnocellular (MC) processing and reading ability. Reading ability in a group of primary school children was compared to performance on a visual cued coherent motion detection task. The results showed that a brief spatial cue was more effective in drawing attention either away or towards a visual target in the group of readers ranked in the upper 25% of the sample compared to lower ranked readers. Regression analysis showed a significant relationship between attentional processing and reading when the effects of age and intellectual ability were removed. Results suggested a stronger relationship between visual attentional and non-word reading compared to irregular word reading. (C) 2004 Lippincott Williams & Wilkins, Inc.