100 resultados para Aspheric collimating lens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim of this study was to assess the impact of hand washing regimes on lipid transference to contact lenses. The presence of lipids on contact lenses can affect visual acuity and enhance spoilation. Additionally, they may even mediate and foster microbial transfer and serve as a marker of potential dermal contamination. Methods and materials: A social hand wash and the Royal College of Nursing (RCN) hand wash were investigated. A 'no-wash regime' was used as control. The transfer of lipids from the hand was assessed by Thin Layer Chromatography (TLC). Lipid transference to the contact lenses was studied through fluorescence spectroscopy (FS). Results: Iodine staining, for presence of lipids, on TLC plates indicated the 'no-wash regime' score averaged at 3.4 ± 0.8, the social wash averaged at 2.2 ± 0.9 and the RCN averaged at 1.2 ± 0.3 on a scale of 1-4. The FS of lipids on contact lenses for 'no washing' presented an average of 28.47 ± 10.54 fluorescence units (FU), the social wash presented an average of 13.52 ± 11.12. FU and the RCN wash presented a much lower average 6.47 ± 4.26. FU. Conclusions: This work demonstrates how the method used for washing the hands can affect the concentration of lipids, and the transfer of these lipids onto contact lenses. A regime of hand washing for contact lens users should be standardised to help reduce potentially transferable species present on the hands. © 2011 British Contact Lens Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the most appropriate analysis technique for the differentiation of multifocal intraocular lens (MIOL) designs using defocus curve assessment of visual capability.Methods:Four groups of fifteen subjects were implanted bilaterally with either monofocal intraocular lenses, refractive MIOLs, diffractive MIOLs, or a combination of refractive and diffractive MIOLs. Defocus curves between -5.0D and +1.5D were evaluated using an absolute and relative depth-of-focus method, the direct comparison method and a new 'Area-of-focus' metric. The results were correlated with a subjective perception of near and intermediate vision. Results:Neither depth-of-focus method of analysis were sensitive enough to differentiate between MIOL groups (p>0.05). The direct comparison method indicated that the refractive MIOL group performed better at +1.00, -1.00 and -1.50 D and worse at -3.00, -3.50, -4.00 and -5.00D compared to the diffractive MIOL group (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a non-invasive phakometric method for determining corneal axis rotation relative to the visual axis (β) together with crystalline lens axis tilt (α) and decentration (d) relative to the corneal axis. This does not require corneal contact A-scan ultrasonography for the measurement of intraocular surface separations. Theoretical inherent errors of the method, evaluated by ray tracing through schematic eyes incorporating the full range of human ocular component variations, were found to be larger than the measurement errors (β < 0.67°, α < 0.72° and d < 0.08 mm) observed in nine human eyes with known ocular component dimensions. Intersubject variations (mean ± S.D.: β = 6.2 ± 3.4° temporal, α = 0.2 ± 1.8° temporal and d = 0.1 ± 0.1 mm temporal) and repeatability (1.96 × S.D. of difference between repeat readings: β ± 2.0°, α ± 1.8° and d ± 0.2 mm) were studied by measuring the left eyes of 45 subjects (aged 18-42 years, 29 females and 16 males, 15 Caucasians, 29 Indian Asians, one African, refractive error range -7.25 to +1.25 D mean spherical equivalent) on two occasions. © 2005 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assess the accuracy of the Visante anterior segment optical coherence tomographer (AS-OCT) and present improved formulas for measurement of surface curvature and axial separation. Measurements are made in physical model eyes. Accuracy is compared for measurements of corneal thickness (d1) and anterior chamber depth (d2) using-built-in AS-OCT software versus the improved scheme. The improved scheme enables measurements of lens thickness (d 3) and surface curvature, in the form of conic sections specified by vertex radii and conic constants. These parameters are converted to surface coordinates for error analysis. The built-in AS-OCT software typically overestimates (mean±standard deviation(SD)]d1 by +62±4 μm and d2 by +4±88μm. The improved scheme reduces d1 (-0.4±4 μm) and d2 (0±49 μm) errors while also reducing d3 errors from +218±90 (uncorrected) to +14±123 μm (corrected). Surface x coordinate errors gradually increase toward the periphery. Considering the central 6-mm zone of each surface, the x coordinate errors for anterior and posterior corneal surfaces reached +3±10 and 0±23 μm, respectively, with the improved scheme. Those of the anterior and posterior lens surfaces reached +2±22 and +11±71 μm, respectively. Our improved scheme reduced AS-OCT errors and could, therefore, enhance pre- and postoperative assessments of keratorefractive or cataract surgery, including measurement of accommodating intraocular lenses. © 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:To investigate the mechanism of action of the Tetraflex (Lenstec Kellen KH-3500) accommodative intraocular lens (IOL). METHODS:Thirteen eyes of eight patients implanted with the Tetraflex accommodating IOL for at least 2 years underwent assessment of their objective amplitude-of-accommodation by autorefraction, anterior chamber depth and pupil size with optical coherence tomography, and IOL flexure with aberrometry, each viewing a target at 0.0 to 4.00 diopters of accommodative demand. RESULTS:Pupil size decreased by 0.62+/-0.41 mm on increasing accommodative demand, but the Tetraflex IOL was relatively fixed in position within the eye. The ocular aberrations of the eye changed with increased accommodative demand, but not in a consistent manner among individuals. Those aberrations that appeared to be most affected were defocus, vertical primary and secondary astigmatism, vertical coma, horizontal and vertical primary and secondary trefoil, and spherical aberration. CONCLUSIONS:Some of the reported near vision benefits of the Tetraflex accommodating IOL appear to be due to changes in the optical aberrations because of the flexure of the IOL on accommodative effort rather than forward movement within the capsular bag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this thesis is concerned with mechanisms of contact lens lubrication. There are three major driving forces in contact lens design and development; cost, convenience, and comfort. Lubrication, as reflected in the coefficient of friction, is becoming recognised as one of the major factors affecting the comfort of the current generation of contact lenses, which have benefited from several decades of design and production improvements. This work started with the study of the in-eye release of soluble macromolecules from a contact lens matrix. The vehicle for the study was the family of CIBA Vision Focus® DAILIES® daily disposable contact lenses which is based on polyvinyl alcohol (PVA). The effective release of linear soluble PVA from DAILIES on the surface of the lens was shown to be beneficial in terms of patient comfort. There was a need to develop a novel characterisation technique in order to study these effects at surfaces; this led to the study of a novel tribological technique, which allowed the friction coefficients of different types of contact lenses to be measured reproducibly at genuinely low values. The tribometer needed the ability to accommodate the following features: (a) an approximation to eye lid load, (b) both new and ex-vivo lenses, (c) variations in substrate, (d) different ocular lubricants (including tears). The tribometer and measuring technique developed in this way was used to examine the surface friction and lubrication mechanisms of two different types of contact lenses: daily disposables and silicone hydrogels. The results from the tribometer in terms of both mean friction coefficient and the friction profiles obtained allowed various mechanisms used for surface enhancement now seen in the daily disposable contact lens sector to be evaluated. The three major methods used are: release of soluble macromolecules (such as PVA) from the lens matrix, irreversible surface binding of a macromolecule (such as polyvinyl pyrrolidone) by charge transfer and the simple polymer adsorption (e.g. Pluoronic) at the lens surface. The tribological technique was also used to examine the trends in the development of silicone hydrogel contact lenses. The focus of the principles in the design of silicone hydrogels has now shifted from oxygen permeability, to the improvement of surface properties. Presently, tribological studies reflect the most effective in vitro method of surface evaluation in relation to the in-eye comfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Most published surface wettability data are based on hydrated materials and are dominated by the air-water interface. Water soluble species with hydrophobic domains (such as surfactants) interact directly with the hydrophobic domains in the lens polymer. Characterisation of relative polar and non-polar fractions of the dehydrated material provides an additional approach to surface analysis. Method: Probe liquids (water and diiodomethane) were used to characterise polar and dispersive components of surface energies of dehydrated lenses using the method of Owens and Wendt. A range of conventional and silicone hydrogel soft lenses was studied. The polar fraction (i.e. polar/total) of surface energy was used as a basis for the study of the structural effects that influence surfactant persistence on the lens surface. Results: When plotted against water content of the hydrated lens, polar fraction of surface energy (PFSE) values of the dehydrated lenses fell into two rectilinear bands. One of these bands covered PFSE values ranging from 0.4 to 0.8 and contained only conventional hydrogels, with two notable additions: the plasma coated silicone hydrogels lotrafilcon A and B. The second band covered PFSE values ranging from 0.04 to 0.28 and contained only silicone hydrogels. Significantly, the silicone hydrogel lenses with lowest PFSE values (p<0.15) are found to be prone to lipid deposition duringwear. Additionally, more hydrophobic surfactants were found to be more persistent on lenses with lower PFSE values. Conclusions: Measurement of polar fraction of surface energy provides an importantmechanistic insight into surface interactions of silicone hydrogels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project objective was to develop a reliable selection procedure to match contact lens materials with individual wearers by the identification of a biochemical marker for assessment of in-eye performance of contact lenses. There is a need for such a procedure as one of the main reasons for contact lens wearers ceasing wearing contact lenses is poor end of day comfort i.e. the lenses become intolerable to the wearer as the day progresses. The selection of an optimal material for individual wearers has the potential benefit to reduce drop Qut, hence increasing the overall contact lens population, and to improve contact lens comfort for established wearers. Using novel analytical methods and statistical techniques, we were able to investigate the interactions between the composition of the tear film and of the biofilm deposited on the contact lenses and contact lens performance. The investigations were limited to studying the lipid components of the tear film; the lipid layer, which plays a key role in preventing evaporation and stabilising the tear film, has been reported to be significantly thinner and of different mixing characteristics during contact lens wear. Different lipid families were found to influence symptomatology, in vivo tear film structure and stability as well as ocular integrity. Whereas the symptomatology was affected by both the tear film lipid composition and the nature of the lipid deposition, the structure of the tear film and its stability were mainly influenced by the tear film lipid composition. The ocular integrity also appeared to be influenced by the nature of the lipid deposition. Potential markers within the lipid species have been identified and could be applied as follows: When required in order to identify a problematic wearer or to match the contact lens material to the contact lens wearer, tear samples collected by the clinician could be dispatched to an analytical laboratory where lipid analysis could be carried out by HPLC. A colorimetric kit based on the lipid markers could also be developed and used by clinician directly in the practice; such a kit would involve tear sampling and classification according to the colour into "Problem", "Border line" and "Good" contact lens wearers groups. A test kit would also have wider scope for marketing in other areas such as general dry-eye pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact lenses have become a popular method of vision correction for millions of people globally. As with all devices designed for use within the body, interactions occur between the implanted material and the surrounding biological fluid. A common complaint of lens wearers is that they often experience symptoms of dry eye whilst wearing lenses. This sensation is often heightened towards the end of the day. Through the course of this study, various analytical techniques have been utilised including one dimensional electrophoresis and Western Blotting to study the protein profiles of tear samples. By studying the tears of non-contact lens wearers, it was possible to analyse what could be considered normal, healthy, individuals. A clinical study was also undertaken which followed a population of individuals from the neophyte stage to one whereby they were accustomed lens wearers. Tears were monitored at regular intervals throughout the course of this study and worn contact lenses were also analysed for proteins that had been deposited both on and within the lens. Contact lenses disrupt the tear film in a physical manner by their very presence. They are also thought to cause the normal protein profile to deviate from what would be considered normal. The tear film deposits proteins and lipids onto and within the lens. The lens may therefore be depriving the tear film of certain necessary components. The ultimate aim of this thesis was to discover how, and to what extent, lenses affected tear proteins and if there were any proteins in the tear fluid that had the potential to be used as biochemical markers. Should this be achievable it may be possible to identify those individuals who were more likely to become intolerant lens wearers. This study followed the changes taking place to the tear film as an effect of wearing contact lenses. Twenty-eight patients wore two different types of silicone hydrogel lenses in both a daily wear and a continuous wear regime. The tear protein profiles of the lens-wearers were compared with a control group of non-lens wearing individuals. The considerable amount of data that was generated enabled the clearly observable changes to the four main tear proteins to be monitored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this research has been to determine the potential of fluorescence spectroscopy as a method for analysis of surface deposition on contact lenses. In order to achieve this it was first necessary to ascertain whether fluorescence analysis would be able to detect and distinguish between protein and lipid deposited on a lens surface. In conjunction with this it was important to determine the specific excitation wavelengths at which these deposited species were detected with the greatest sensitivity. Experimental observations showed that an excitation wavelength of 360nm would detect lipid deposited on a lens surface, and an excitation wavelength of 280nm would detect and distinguish between protein and lipid deposited on a contact lens. It was also very important to determine whether clean unspoilt lenses showed significant levels of fluorescence themselves. Fluorescence spectra recorded from a variety of unworn contact lenses at excitation wavelengths of 360nm and 280nm indicated that most contact lens materials do not fluoresce themselves to any great extent. Following these initial experiments various clinically and laboratory based studies were performed using fluorescence spectroscopy as a method of analysing contact lens deposition levels. The clinically based studies enabled analysis of contact lenses with known wear backgrounds to be rapidly and individually analysed following discontinuation of wear. Deposition levels in the early stages of lens wear were determined for various lens materials. The effect of surfactant cleaning on deposition levels was also investigated. The laboratory based studies involved comparing some of the in vivo results with those of identical lenses that had been spoilt using an in vitro method. Finally, an examination of lysosyme migration into and out of stored ionic high water contact lenses was made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft contact lens wear has become a common phenomenon in recent times. The contact lens when placed in the eye rapidly undergoes change. A film of biological material builds up on and in the lens matrix. The long term wear characteristics of the lens ultimately depend on this process. With time distinct structures made up of biological material have been found to build up on the lens. A fuller understanding of this process and how it relates to the lens chemistry could lead to contact lenses that are better tolerated by the eye. The tear film is a complex biological fluid, it is this fluid that bathes the lens during wear. It is reasonable to suppose that it is material derived from this source that accumulates on the lens. To understand this phenomenon it was decided to investigate the make up and conformation of the protein species that are found on and in the lens. As inter individual variations in tear fluid composition have been found it is important to be able to study the proteins on a single lens. Many of the analytical techniques used in bio research are not suitable for this study because of the lack of sensitivity. Work with poly acrylamide electrophoresis showed the possibility of analyzing the proteins extracted from a single lens. The development of a biotin avidin electro-blot and an enzyme linked aniibody electro-blot, lead to the high sensitivity detection and identification of the proteins present. The extraction of proteins from a lens is always incomplete. A method that analyses the proteins in situ would be a great advancement. Fourier transform infra red microscopy was developed to a point where a thin section of a contact lens could yield information about the proteins present and their conformation. The three dimensional structure of the gross macroscopic structures termed white spots was investigated using confocal laser microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element analysis is a useful tool in understanding how the accommodation system of the eye works. Further to simpler FEA models that have been used hitherto, this paper describes a sensitivity study which aims to understand which parameters of the crystalline lens are key to developing an accurate model of the accommodation system. A number of lens models were created, allowing the mechanical properties, internal structure and outer geometry to be varied. These models were then spun about their axes, and the deformations determined. The results showed the mechanical properties are the critical parameters, with the internal structure secondary. Further research is needed to fully understand how the internal structure and properties interact to affect lens deformation.