19 resultados para Aspect-oriented software development
Resumo:
We have attempted to bring together two areas which are challenging for both IS research and practice: forms of coordination and management of knowledge in the context of global, virtual software development projects. We developed a more comprehensive, knowledge-based model of how coordination can be achieved, and\illustrated the heuristic and explanatory power of the model when applied to global software projects experiencing different degrees of success. We first reviewed the literature on coordination and determined what is known about coordination of knowledge in global software projects. From this we developed a new, distinctive knowledge-based model of coordination, which was then employed to analyze two case studies of global software projects, at SAP and Baan, to illustrate the utility of the model.
Resumo:
Developers of interactive software are confronted by an increasing variety of software tools to help engineer the interactive aspects of software applications. Typically resorting to ad hoc means of tool selection, developers are often dissatisfied with their chosen tool on account of the fact that the tool lacks required functionality or does not fit seamlessly within the context in which it is to be used. This paper describes a system for evaluating the suitability of user interface development tools for use in software development organisations and projects such that the selected tool appears ‘invisible’ within its anticipated context of use. The paper also outlines and presents the results of an informal empirical study and a series of observational case studies of the system.
Resumo:
Many software engineers have found that it is difficult to understand, incorporate and use different formal models consistently in the process of software developments, especially for large and complex software systems. This is mainly due to the complex mathematical nature of the formal methods and the lack of tool support. It is highly desirable to have software models and their related software artefacts systematically connected and used collaboratively, rather than in isolation. The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. This paper proposed a framework that allows users to interconnect the knowledge about formal software models and other related documents using the semantic technology. We first propose a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them. We then develop a Semantic Web environment for representing and sharing formal Z/OZ models. A method with prototype tool is presented to enhance semantic query to software models and other artefacts. © 2014.
Resumo:
One of the reasons for using variability in the software product line (SPL) approach (see Apel et al., 2006; Figueiredo et al., 2008; Kastner et al., 2007; Mezini & Ostermann, 2004) is to delay a design decision (Svahnberg et al., 2005). Instead of deciding on what system to develop in advance, with the SPL approach a set of components and a reference architecture are specified and implemented (during domain engineering, see Czarnecki & Eisenecker, 2000) out of which individual systems are composed at a later stage (during application engineering, see Czarnecki & Eisenecker, 2000). By postponing the design decisions in such a manner, it is possible to better fit the resultant system in its intended environment, for instance, to allow selection of the system interaction mode to be made after the customers have purchased particular hardware, such as a PDA vs. a laptop. Such variability is expressed through variation points which are locations in a software-based system where choices are available for defining a specific instance of a system (Svahnberg et al., 2005). Until recently it had sufficed to postpone committing to a specific system instance till before the system runtime. However, in the recent years the use and expectations of software systems in human society has undergone significant changes.Today's software systems need to be always available, highly interactive, and able to continuously adapt according to the varying environment conditions, user characteristics and characteristics of other systems that interact with them. Such systems, called adaptive systems, are expected to be long-lived and able to undertake adaptations with little or no human intervention (Cheng et al., 2009). Therefore, the variability now needs to be present also at system runtime, which leads to the emergence of a new type of system: adaptive systems with dynamic variability.