24 resultados para Antigen Presenting Cells
Resumo:
A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.
Resumo:
This paper resolves the long standing debate as to the proper time scale τ of the onset of the immunological synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen presenting cells. Results from our model calculations show τ to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair (Δ2∼ 40-45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex pMHC bond (Δ1∼ 14-15 nm), τ grows monotonically with increasing coreceptor bond length separation δ (= Δ2-Δ1∼ 26-30 nm) while τ decays with Δ1 for fixed Δ2. The nonuniversal δ-dependent power-law structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse.
Resumo:
Adjuvants are substances that boost the protective immune response to vaccine antigens. The majority of known adjuvants have been identified through the use of empirical approaches. Our aim was to identify novel adjuvants with well-defined cellular and molecular mechanisms by combining a knowledge of immunoregulatory mechanisms with an in silico approach. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) inhibit the protective immune responses to vaccines by suppressing the activation of antigen presenting cells such as dendritic cells (DCs). In this chapter, we describe the identification and functional validation of small molecule antagonists to CCR4, a chemokine receptor expressed on Tregs. The CCR4 binds the chemokines CCL22 and CCL17 that are produced in large amounts by activated innate cells including DCs. In silico identified small molecule CCR4 antagonists inhibited the migration of Tregs both in vitro and in vivo and when combined with vaccine antigens, significantly enhanced protective immune responses in experimental models.
Resumo:
The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.
Resumo:
A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended.
Resumo:
1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.
Resumo:
The thymic anlagen appears in Tilapia mossambica at 2 days post hatching and becomes lymphoid at 5 days. Lymphoid cells were first seen in the pronephros at 14 days and in the spleen at approximately five weeks of age. Differentiation into red and white pulp regions was seen by 10 weeks of age. Light and electron microscopic studies of adult lymphoid organ revealed increases in size and lymphoid cell numbers. Adult thymus develops a clearer corticomedullary differentiation of thymic corpuscles in the medulla and in the splenic red and white pulp became more distinct. Melanomacrophage centres were seen in spleen and pronephros. Adult fish gave primary and secondary antibody responses following challenge with sheep red bloods cells (SRBC), Escherichia coli (E. coli) and human gamma globulin (HGG). Plaque forming cell and immunocytoadherence assays revealed that head kidney and spleen were major sites for antibody production and development of antigen reactive cells. Proliferative activity in these organs was revealed using autoradiography and scintillation counting. Increased levels of pyroninophilia were also seen following antigenic challenge. Pilot studies on adults revealed that they were capable of rejecting first and second set allografts and leucocytes from spleen and head kidney proliferated in mixed leucocyte cultures. Antibody responses to SRBC, E. coli and HGG develop at about 10-12 weeks of age. Fry given either a single injection of SRBC at 10 weeks or two injections of the same antigen at 10 weeks and 12 days later, failed to respond to a further challenge with SRBC 56 days after the first injection (A time when animals would normally respond positively to this antigen). Injection of E. coli at the same times resulted in a prolonged antibody response.
Resumo:
The article analyzes the contribution of stochastic thermal fluctuations in the attachment times of the immature T-cell receptor TCR: peptide-major-histocompatibility-complex pMHC immunological synapse bond. The key question addressed here is the following: how does a synapse bond remain stabilized in the presence of high-frequency thermal noise that potentially equates to a strong detaching force? Focusing on the average time persistence of an immature synapse, we show that the high-frequency nodes accompanying large fluctuations are counterbalanced by low-frequency nodes that evolve over longer time periods, eventually leading to signaling of the immunological synapse bond primarily decided by nodes of the latter type. Our analysis shows that such a counterintuitive behavior could be easily explained from the fact that the survival probability distribution is governed by two distinct phases, corresponding to two separate time exponents, for the two different time regimes. The relatively shorter timescales correspond to the cohesion:adhesion induced immature bond formation whereas the larger time reciprocates the association:dissociation regime leading to TCR:pMHC signaling. From an estimate of the bond survival probability, we show that, at shorter timescales, this probability PΔ(τ) scales with time τ as a universal function of a rescaled noise amplitude DΔ2, such that PΔ(τ)∼τ-(ΔD+12),Δ being the distance from the mean intermembrane (T cell:Antigen Presenting Cell) separation distance. The crossover from this shorter to a longer time regime leads to a universality in the dynamics, at which point the survival probability shows a different power-law scaling compared to the one at shorter timescales. In biological terms, such a crossover indicates that the TCR:pMHC bond has a survival probability with a slower decay rate than the longer LFA-1:ICAM-1 bond justifying its stability.
Resumo:
A prerequisite for vaccine-mediated induction of CD8+ T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8+ T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown to result in strong CD8+ T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8+ T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i.p. immunization, is required for the subsequent activation of cross-presenting lymphoid organ-resident CD8α+ DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-presenting CD8α+ DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity of the strong CD8+ T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes with polyinosinic:polycytidylic acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose localized in the draining lymph nodes (dLNs) and the spleen 6 h after i.p. immunization, as compared to after i.m. immunization. Studies with fluorescently labelled OVA + CAF09 demonstrated a preferential association of OVA + CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Administration of OVA + CAF09 via the i.p. route did also result in DC activation, whereas no DC activation could be measured within the same period with unadjuvanted OVA and OVA + CAF09 administered via the s.c. or i.m. routes. In the dLNs, the highest level of activated, cross-presenting CD8α+ DCs was detected at 24 h post immunization, whereas an influx of activated, migrating and cross-presenting CD103+ DCs to the dLNs could be measured after 48 h. This suggests that the CD8α+ DCs are activated by self-draining OVA + CAF09 in the lymphoid organs, whereas the CD103+ DCs are stimulated by the OVA + CAF09 at the SOI. These results support the hypothesis that the self-drainage of OVA + CAF09 to the draining LNs is required for the activation of CD8α+ DCs, while the migratory CD103+ DCs may play a role in sustaining the subsequent induction of strong CD8+ T-cell responses.