24 resultados para Amines biògenes
Resumo:
Aim: Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Methods: Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol andtris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. Results and conclusion: The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility. © 2012 Informa Healthcare USA, Inc.
Resumo:
Mucobromic and mucochloric acid were used as building blocks for the construction of a chemical combinatorial library of 3,4,5-trisubstituted 2(5H)-furanones. With these 2 butenolide building blocks, and eight alcohols a sublibrary of 16 dihalogenated 5-alkoxy-2(5H)-furanones was prepared. This sublibrary of 5-alkoxylated furanones was reacted with 16 amines generating a full size focussed combinatorial library of 256 individual compounds. This three dimensional combinatorial library of 3-halogen-4-amino-5-alkoxy-2(5H)-furanones was prepared around the benzimidazolyl furanone lead structure by applying a solution phase combinatorial chemistry concept. Typical representatives of the library were purified and fully characterized and one x-ray structures was recorded, additionally. The 3-bromo-4-benzimizazolyl-5-methoxy-2(5H)furanone, Br-A-l, showed an MIC of 8 μg/ml against the multiresistant Staphylococcus aureus ( MRSA). © 2006 Bentham Science Publishers Ltd.
Resumo:
Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.
Resumo:
Transglutaminases (Tgases) are a widely distributed group of enzymes that catalyse the post-translational modification of proteins by the formation of isopeptide bonds. This occurs either through protein cross-linking via epsilon-(gamma-glutamyl)lysine bonds or through incorporation of primary amines at selected peptide-bound glutamine residues. The cross-linked products, often of high molecular mass, are highly resistant to mechanical challenge and proteolytic degradation, and their accumulation is found in a number of tissues and processes where such properties are important, including skin, hair, blood clotting and wound healing. However, deregulation of enzyme activity generally associated with major disruptions in cellular homoeostatic mechanisms has resulted in these enzymes contributing to a number of human diseases, including chronic neurodegeneration, neoplastic diseases, autoimmune diseases, diseases involving progressive tissue fibrosis and diseases related to the epidermis of the skin. In the present review we detail the structural and regulatory features important in mammalian Tgases, with particular focus on the ubiquitous type 2 tissue enzyme. Physiological roles and substrates are discussed with a view to increasing and understanding the pathogenesis of the diseases associated with transglutaminases. Moreover the ability of these enzymes to modify proteins and act as biological glues has not gone unnoticed by the commercial sector. As a consequence, we have included some of the present and future biotechnological applications of this increasingly important group of enzymes.
Resumo:
3-Amino-1,4-benzodiazepines as well as chemically related diverse amines were prepared from oxazepam and subsequently screened on the cholecystokinin receptor in a radiolabel binding assay. Oxazepam 2 was activated via its 3-chloro-1,4-benzodiazepine intermediate 3 and was reacted with a large series of aliphatic and aromatic amines. The substituted 3-anilino-1,4-benzodiazepine structure was identified as lead structure in a diverse series of 3-amino-1,4-benzodiazepines 4-38 and the full SAR (structure-activity relationship) optimisation provided 3-anilinobenzodiazepines 16-38 with CCK 1 receptor selectivity to CCK 2. The compounds 18, 24, 28 and 33 have shown affinities at the CCK 1 receptor of 11, 10, 11 and 9 nM, respectively. These equipotent CCK 1 ligands were fully evaluated in behaviour pharmacological essays. An antidepressant effect was identified in the tail suspension- and the Porsolt swimming-test. The ED 50 values for 24 and 28 were determined in these assays as 0.46 and 0.49 mg/kg. The mixed antagonist 37 showed in addition to the antidepressant effects anxiolytic properties. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
The 5-HT7 receptor is linked with various CNS disorders. Using an automated solution phase synthesis a combinatorial library of 384 N-substituted N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]-arylsulfonamides was prepared with 24 chemically diverse amines 1-24 and 16 sulfonyl chlorides A-P. The chemical library of alkylated sulfonamides was evaluated in a receptor binding assay with [3]H-5-CT as ligand. The key synthetic step was the alkylation of a sulfonamide with iodide E, which was prepared from butanediol in 4 synthetic steps. The target compounds 1A, 1B .....24A ... 24P were purified by solvent extraction on a Teacan liquid handling system. Sulfonamide J20, B23, D23, G23, G23, J23 , I24 and O24 displayed a binding affinity IC50 between 100 nM and 10 nM. The crystalline J20 (IC50=39 nM) and O24 (IC50=83 nM) were evaluated further in the despair swimming test and the tail suspension assay. A significant antidepressant activity was found in mice of a greater magnitude than imipramine and fluoxetine at low doses. © 2006 Bentham Science Publishers Ltd.
Resumo:
The newly synthesized dioxaborine dyes, derivatives of dehydroacetic acid, were tested for the detection of amines and ammonia. To discriminate the substance with efficient sensing parameters, series of ca. 20 dioxaborine dyes were synthesized and tested for reactivity with amines. The most promising one showed the fluorescent sensitivity to amines in the range of 1-4 ppm. © (2014) Trans Tech Publications.
Resumo:
Rapidly rising world populations have sparked growing concerns over global food production to meet this increasing demand. Figures released by The World Bank suggest that a 50 % increase in worldwide cereal production is required by 2030. Primary amines are important intermediates in the synthesis of a wide variety of fine chemicals utilised within the agrochemical industry, and hence new 'greener' routes to their low cost manufacture from sustainable resources would permit significantly enhanced crop yields. Early synthetic pathways to primary amines employed stoichiometric (and often toxic) reagents via multi-step protocols, resulting in a large number of by-products and correspondingly high Environmental factors of 50-100 (compared with 1-5 for typical bulk chemicals syntheses). Alternative catalytic routes to primary amines have proven fruitful, however new issues relating to selectivity and deactivation have slowed commercialisation. The potential of heterogeneous catalysts for nitrile hydrogenation to amines has been demonstrated in a simplified reaction framework under benign conditions, but further work is required to improve the atom economy and energy efficiency through developing fundamental insight into nature of the active species and origin of on-stream deactivation. Supported palladium nanoparticles have been investigated for the hydrogenation of crotononitrile to butylamine (Figure 1) under favourable conditions, and the impact of reaction temperature, hydrogen pressure, support and loading upon activity and selectivity to C=C versus CºN activation assessed.
Resumo:
Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.