19 resultados para Agroindustrial by-product
Resumo:
The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO2, ZnO, γ-Al2O3, CeO2 is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO2 and γ-Al2O3. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature.
Resumo:
Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater.
Resumo:
This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg−1 or 120.0 MJ m−3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.
Resumo:
The thermo-chemical conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15 (CCAP 11/32CW15) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterised for ultimate and gross chemical composition, lipid composition and extracted products were analysed by Thermogravimetric analysis (TG/DTG) and Pyrolysis-gaschromatography/mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA analysis, each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS analysis revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15 were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid methyl ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolysed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.