46 resultados para Agonistic signals
Resumo:
We present a phase locking scheme that enables the demonstration of a practical dual pump degenerate phase sensitive amplifier for 10 Gbit/s non-return to zero amplitude shift keying signals. The scheme makes use of cascaded Mach Zehnder modulators for creating the pump frequencies as well as of injection locking for extracting the signal carrier and synchronizing the local lasers. An in depth optimization study has been performed, based on measured error rate performance, and the main degradation factors have been identified.
Resumo:
Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.
Resumo:
Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.
Resumo:
Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. In the first paper (part I) of this series of two, we presented background theory building on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literature, are each associated with a special case of a generalized functional, that, when minimized, solves the PWC denoising problem. It shows how the minimizer can be obtained by a range of computational solver algorithms. In this second paper (part II), using this understanding developed in part I, we introduce several novel PWC denoising methods, which, for example, combine the global behaviour of mean shift clustering with the local smoothing of total variation diffusion, and show example solver algorithms for these new methods. Comparisons between these methods are performed on synthetic and real signals, revealing that our new methods have a useful role to play. Finally, overlaps between the generalized methods of these two papers and others such as wavelet shrinkage, hidden Markov models, and piecewise smooth filtering are touched on.
Resumo:
This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented.
Resumo:
We propose a novel technique of doubling optical pulses in both frequency and time domains based on a combination of cross-phase modulation induced by a triangular pump pulse in a nonlinear Kerr medium and subsequent propagation in a dispersive medium.
Resumo:
We present a simplified model for a simple estimation of the eye-closure penalty for amplitude noise-degraded signals. Using a typical 40-Gbit/s return-to-zero amplitude-shift-keying transmission, we demonstrate agreement between the model predictions and the results obtained from the conventional numerical estimation method over several thousand kilometers.
Resumo:
Detection and interpretation of adverse signals during preclinical and clinical stages of drug development inform the benefit-risk assessment that determines suitability for use in real-world situations. This review considers some recent signals associated with diabetes therapies, illustrating the difficulties in ascribing causality and evaluating absolute risk, predictability, prevention, and containment. Individual clinical trials are necessarily restricted for patient selection, number, and duration; they can introduce allocation and ascertainment bias and they often rely on biomarkers to estimate long-term clinical outcomes. In diabetes, the risk perspective is inevitably confounded by emergent comorbid conditions and potential interactions that limit therapeutic choice, hence the need for new therapies and better use of existing therapies to address the consequences of protracted glucotoxicity. However, for some therapies, the adverse effects may take several years to emerge, and it is evident that faint initial signals under trial conditions cannot be expected to foretell all eventualities. Thus, as information and experience accumulate with time, it should be accepted that benefit-risk deliberations will be refined, and adjustments to prescribing indications may become appropriate. © 2013 by the American Diabetes Association.
Resumo:
Polarization diverse optical phase conjugation of a 1THz spectral-band 1.14Tb/s DP-QPSK WDM multiplex is demonstrated for the first time, showing a worst case Q2 penalty of 0.9dB over all conjugate wavelengths, polarizations and OSNR. © 2014 OSA.
Resumo:
Purpose: It is widely accepted that pupil responses to visual stimuli are determined by the ambient illuminance, and recently it has been shown that changes in stimulus color also contributes to a pupillary control mechanism. However, the role of pupillary responses to chromatic stimuli is not clear. The aim of this study was to investigate how color and luminance signals contribute to the pupillary control mechanism. Methods: We measured pupillary iso-response contours in M-and L-cone contrast space. The iso-response contours in cone-contrast space have been determined to examine what mechanisms contribute to the pupillary pathway. The shapes of the iso-response contour change when different mechanisms determine the response. Results: It was shown that for all subjects, the pupillary iso-response contours form an ellipse with positive slope in cone-contrast space, indicating that the sensitivities to the chromatic stimuli are higher than those for the luminance stimuli. The pupil responds maximally to a grating that has a stronger L-cone modulation than the red-green isoluminant grating. Conclusions: The sensitivity of the chromatic pathway, in terms of pupillary response, is three times larger than that of the luminance pathway, a property that might have utility in clinical applications. Copyright © Taylor & Francis Group, LLC.
Resumo:
Photonic signal processing is used to implement common mode signal cancellation across a very wide bandwidth utilising phase modulation of radio frequency (RF) signals onto a narrow linewidth laser carrier. RF spectra were observed using narrow-band, tunable optical filtering using a scanning Fabry Perot etalon. Thus functions conventionally performed using digital signal processing techniques in the electronic domain have been replaced by analog techniques in the photonic domain. This technique was able to observe simultaneous cancellation of signals across a bandwidth of 1400 MHz, limited only by the free spectral range of the etalon. © 2013 David M. Benton.
Resumo:
We summarize the results of our recent demonstration of the first multi-channel regenerator for phase encoded signals. By developing a novel inline phase sensitive amplification scheme simultaneous suppression of deterministic phase distortion on two independent 42.66 Gbit/s DPSK modulated signal wavelengths was achieved. © 2012 SEE.
Resumo:
We demonstrate the first multi-wavelength regeneration of quadrature phase shift keyed (QPSK) formatted signals, showing a simultaneous Q2-factor improvement in excess of 3.8 dB for signals degraded by phase distortion