19 resultados para Ag-ZSM-5 catalyst
Resumo:
Semihydrogenation of acetylene in an ethylene-rich stream is an industrially important process. Conventional supported monometallic Pd catalysts offer high acetylene conversion, but they suffer from very low selectivity to ethylene due to overhydrogenation and the formation of carbonaceous deposits. Herein, a series of Ag alloyed Pd single-atom catalysts, possessing only ppm levels of Pd, supported on silica gel were prepared by a simple incipient wetness coimpregnation method and applied to the selective hydrogenation of acetylene in an ethylene-rich stream under conditions close to the front-end employed by industry. High acetylene conversion and simultaneous selectivity to ethylene was attained over a wide temperature window, surpassing an analogous Au alloyed Pd single-atom system we previously reported. Restructuring of AgPd nanoparticles and electron transfer from Ag to Pd were evidenced by in situ FTIR and in situ XPS as a function of increasing reduction temperature. Microcalorimetry and XANES measurements support both geometric and electronic synergetic effects between the alloyed Pd and Ag. Kinetic studies provide valuable insight into the nature of the active sites within these AgPd/SiO2 catalysts, and hence, they provide evidence for the key factors underpinning the excellent performance of these bimetallic catalysts toward the selective hydrogenation of acetylene under ethylene-rich conditions while minimizing precious metal usage.
Resumo:
Nanoparticulate gold has emerged as a promising catalyst for diverse mild and efficient selective aerobic oxidations. However, the mechanism of such atom-economical transformations, and synergy with functional supports, remains poorly understood. Alkali-free Mg-Al hydrotalcites are excellent solid base catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA), but only in concert with high concentrations of metallic gold nanoparticles. In the absence of soluble base, competitive adsorption between strongly-bound HMF and reactively-formed oxidation intermediates site-blocks gold. Aqueous NaOH dramatically promotes solution phase HMF activation, liberating free gold sites able to activate the alcohol function within the metastable 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) reactive intermediate. Synergistic effects between moderate strength base sites within alkali-free hydrotalcites and high gold surface concentrations can afford highly selective and entirely heterogeneous catalysts for aqueous phase aldehyde and alcohol cascade oxidations pertinent to biomass transformation.
Resumo:
Parkinson's disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson's UK and co-organized by Critical Path Institute's (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson's disease.
Resumo:
The metal catalyzed hydrogenolysis of the biomass-derived THF-dimethanol to 1,2,6-hexanetriol using heterogeneous catalysts was investigated. Bimetallic Rh-Re catalysts (4 wt% Rh and a Re/Rh (mol. ratio of 0.5) on a silica support gave the best performance and 1,2,6-hexanetriol was obtained in 84% selectivity at 31% conversion (120 C, 80 bar, 4 h); the selectivity reaches a maximum of 92% at 80 C. The product distribution at prolonged reaction times or higher temperatures or both shows the formation of diols and mono-alcohols, indicating that the 1,2,6-hexanetriol is prone to subsequent hydrodeoxygenation reactions. Different silica supports were investigated and optimal results were obtained with an amorphous silica featuring an intermediate surface area and an average mesopore size of about 6 nm. TPR and XPS surface analysis support the presence of mixed Rh and Re particles. The redox Reδ+/ReTotal surface ratio correlates with the conversion in a volcano type dependency. Both gas phase as well as Rh200Re1OH cluster DFT calculations support an acid-metal bifunctional mechanism and explain the products distribution. © 2013 Elsevier B.V. All rights reserved.