20 resultados para Adherence steel-concrete
Resumo:
This thesis describes an investigation of the effect of elevated temperatures upon the properties of plain concrete containing a siliceous aggregate. A complete stress-strain relationship and creep behaviour are studied. Transient effects (non-steady state) are also examined in order to simulate more realistic conditions. A temperature range of 20-700ºC is used. corresponding to the temperatures generally attained during an actual fire. In order to carry out the requisite tests, a stiff compression testing machine has been designed and built. The overall control of the test rig is provided by a logger/computer system by developing appropriate software, thus enabling the load to be held constant for any period of tlme. Before outlining any details of the development of the testing apparatus which includes an electric furnace and the.associated instrumentation, previous work on properties of both concrete and. steel at elevated temperatures is reviewed. The test programme comprises four series of tests:stress-strain tests (with and without pre-load), transient tests (heating to failure under constant stress) and creep tests (constant stress and constant temperature). Where 3 stress levels are examined: 0.2, 0.4 & 0.6 fc. The experimental results show that the properties of concrete are significantly affected by temperature and the magnitude of the load. The slope of the descending portion branch of the stress-strain curves (strain softening) is found to be temperature dependent. After normalizing the data, the stress-strain curves for different temperatures are represented by a single curve. The creep results are analysed using an approach involving the activation energy which is found to be constant. The analysis shows that the time-dependent deformation is sensibly linear with the applied stress. The total strain concept is shown to hold for the test data within limits.
Resumo:
Three types of crushed rock aggregate were appraised, these being Carboniferous Sandstone, Magnesian Limestone and Jurassic Limestone. A comprehensive aggregate testing programme assessed the properties of these materials. Two series of specimen slabs were cast and power finished using recognised site procedures to assess firstly the influence of these aggregates as the coarse fraction, and secondly as the fine fraction. Each specimen slab was tested at 28 days under three regimes to simulate 2-body abrasion, 3-body abrasion and the effect of water on the abrasion of concrete. The abrasion resistance was measured using a recognised accelerated abrasion testing apparatus employing rotating steel wheels. Relationships between the aggregate and concrete properties and the abrasion resistance have been developed with the following properties being particularly important - Los Angeles Abrasion and grading of the coarse aggregate, hardness of the fine aggregate and water-cement ratio of the concrete. The sole use of cube strength as a measure of abrasion resistance has been shown to be unreliable by this work. A graphical method for predicting the potential abrasion resistance of concrete using various aggregate and concrete properties has been proposed. The effect of varying the proportion of low-grade aggregate in the mix has also been investigated. Possible mechanisms involved during abrasion have been discussed, including localised crushing and failure of the aggregate/paste bond. Aggregates from each of the groups were found to satisfy current specifications for direct finished concrete floors. This work strengthens the case for the increased use of low-grade aggregates in the future.
Resumo:
A number of factors relating to various methods of repair for chloride initiated corrosion damage of reinforced concrete have been studied. A novel methodology has been developed to facilitate the measurement of macro and micro-cell corrosion rates for steel electrodes embedded in mortar prisms containing a chloride gradient. The galvanic bar specimen comprised electrically isolatable segmental mild steel electrodes and was constructed such that macro-cell corrosion currents were determinable for a number of electrode combinations. From this, the conditions giving rise to an incipient anode were established. The influence of several reinforcement and substrate primer systems upon macro-cell corrosion, arising from an incipient anode, within a patch repair have been investigated. Measurements of electrochemical noise were made in order to investigate the suitability of the technique as an on-site means of assessing corrosion activity within chloride contaminated reinforced concrete. For this purpose the standard deviation of potential noise was compared to macro-cell galvanic current data and micro-cell corrosion intensity determined by linear polarisation. Hydroxyl ion pore solution analyses were carried out on mortar taken from cathodically protected specimens. These specimens, containing sodium chloride, were cathodically protected over a range of polarisation potentials. Measurement of the hydroxyl ion concentrations were made in order to examine the possibility of alkali-silica reactions initiated by cathodic protection of reinfored concrete. A range of mortars containing a variety of generic type additives were examined in order to establish their resistances to chloride ion diffusion. The effect of surfactant addition rate was investigated within a cement paste containing various dosages of naphthalene sulphonate.
Resumo:
This thesis describes work done exploring the application of expert system techniques to the domain of designing durable concrete. The nature of concrete durability design is described and some problems from the domain are discussed. Some related work on expert systems in concrete durability are described. Various implementation languages are considered - PROLOG and OPS5, and rejected in favour of a shell - CRYSTAL3 (later CRYSTAL4). Criteria for useful expert system shells in the domain are discussed. CRYSTAL4 is evaluated in the light of these criteria. Modules in various sub-domains (mix-design, sulphate attack, steel-corrosion and alkali aggregate reaction) are developed and organised under a BLACKBOARD system (called DEX). Extensions to the CRYSTAL4 modules are considered for different knowledge representations. These include LOTUS123 spreadsheets implementing models incorporating some of the mathematical knowledge in the domain. Design databases are used to represent tabular design knowledge. Hypertext representations of the original building standards texts are proposed as a tool for providing a well structured and extensive justification/help facility. A standardised approach to module development is proposed using hypertext development as a structured basis for expert systems development. Some areas of deficient domain knowledge are highlighted particularly in the use of data from mathematical models and in gaps and inconsistencies in the original knowledge source Digests.
High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors
Resumo:
Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels. © 2014 Elsevier B.V.