31 resultados para Adaptive learning, Sticky information, Inflation dynamics, Nonlinearities
Resumo:
On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.
Resumo:
An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
The dynamics of supervised learning in layered neural networks were studied in the regime where the size of the training set is proportional to the number of inputs. The evolution of macroscopic observables, including the two relevant performance measures can be predicted by using the dynamical replica theory. Three approximation schemes aimed at eliminating the need to solve a functional saddle-point equation at each time step have been derived.
Resumo:
In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.
Resumo:
Original Paper European Journal of Information Systems (2001) 10, 135–146; doi:10.1057/palgrave.ejis.3000394 Organisational learning—a critical systems thinking discipline P Panagiotidis1,3 and J S Edwards2,4 1Deloitte and Touche, Athens, Greece 2Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK Correspondence: Dr J S Edwards, Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. E-mail: j.s.edwards@aston.ac.uk 3Petros Panagiotidis is Manager responsible for the Process and Systems Integrity Services of Deloitte and Touche in Athens, Greece. He has a BSc in Business Administration and an MSc in Management Information Systems from Western International University, Phoenix, Arizona, USA; an MSc in Business Systems Analysis and Design from City University, London, UK; and a PhD degree from Aston University, Birmingham, UK. His doctorate was in Business Systems Analysis and Design. His principal interests now are in the ERP/DSS field, where he serves as project leader and project risk managment leader in the implementation of SAP and JD Edwards/Cognos in various major clients in the telecommunications and manufacturing sectors. In addition, he is responsible for the development and application of knowledge management systems and activity-based costing systems. 4John S Edwards is Senior Lecturer in Operational Research and Systems at Aston Business School, Birmingham, UK. He holds MA and PhD degrees (in mathematics and operational research respectively) from Cambridge University. His principal research interests are in knowledge management and decision support, especially methods and processes for system development. He has written more than 30 research papers on these topics, and two books, Building Knowledge-based Systems and Decision Making with Computers, both published by Pitman. Current research work includes the effect of scale of operations on knowledge management, interfacing expert systems with simulation models, process modelling in law and legal services, and a study of the use of artifical intelligence techniques in management accounting. Top of pageAbstract This paper deals with the application of critical systems thinking in the domain of organisational learning and knowledge management. Its viewpoint is that deep organisational learning only takes place when the business systems' stakeholders reflect on their actions and thus inquire about their purpose(s) in relation to the business system and the other stakeholders they perceive to exist. This is done by reflecting both on the sources of motivation and/or deception that are contained in their purpose, and also on the sources of collective motivation and/or deception that are contained in the business system's purpose. The development of an organisational information system that captures, manages and institutionalises meaningful information—a knowledge management system—cannot be separated from organisational learning practices, since it should be the result of these very practices. Although Senge's five disciplines provide a useful starting-point in looking at organisational learning, we argue for a critical systems approach, instead of an uncritical Systems Dynamics one that concentrates only on the organisational learning practices. We proceed to outline a methodology called Business Systems Purpose Analysis (BSPA) that offers a participatory structure for team and organisational learning, upon which the stakeholders can take legitimate action that is based on the force of the better argument. In addition, the organisational learning process in BSPA leads to the development of an intrinsically motivated information organisational system that allows for the institutionalisation of the learning process itself in the form of an organisational knowledge management system. This could be a specific application, or something as wide-ranging as an Enterprise Resource Planning (ERP) implementation. Examples of the use of BSPA in two ERP implementations are presented.
Resumo:
This thesis deals with the problem of Information Systems design for Corporate Management. It shows that the results of applying current approaches to Management Information Systems and Corporate Modelling fully justify a fresh look to the problem. The thesis develops an approach to design based on Cybernetic principles and theories. It looks at Management as an informational process and discusses the relevance of regulation theory to its practice. The work proceeds around the concept of change and its effects on the organization's stability and survival. The idea of looking at organizations as viable systems is discussed and a design to enhance survival capacity is developed. It takes Ashby's theory of adaptation and developments on ultra-stability as a theoretical framework and considering conditions for learning and foresight deduces that a design should include three basic components: A dynamic model of the organization- environment relationships; a method to spot significant changes in the value of the essential variables and in a certain set of parameters; and a Controller able to conceive and change the other two elements and to make choices among alternative policies. Further considerations of the conditions for rapid adaptation in organisms composed of many parts, and the law of Requisite Variety determine that successful adaptive behaviour requires certain functional organization. Beer's model of viable organizations is put in relation to Ashby's theory of adaptation and regulation. The use of the Ultra-stable system as abstract unit of analysis permits developing a rigorous taxonomy of change; it starts distinguishing between change with in behaviour and change of behaviour to complete the classification with organizational change. It relates these changes to the logical categories of learning connecting the topic of Information System design with that of organizational learning.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
This research explored how a more student-directed learning design can support the creation of togetherness and belonging in a community of distance learners in formal higher education. Postgraduate students in a New Zealand School of Education experienced two different learning tasks as part of their online distance learning studies. The tasks centered around two online asynchronous discussions each for the same period of time and with the same group of students, but following two different learning design principles. All messages were analyzed using a twostep analysis process, content analysis and social network analysis. Although the findings showed a balance of power between the tutor and the students in the first high e-moderated activity, a better pattern of group interaction and community feeling was found in the low e-moderated activity. The paper will discuss the findings in terms of the implications for learning design and the role of the tutor.
Resumo:
This edited book is intended for use by students, academics and practitioners who take interest in the outsourcing and offshoring of information technology and business services and processes. The book offers a review of the key topics in outsourcing and offshoring, populated with practical frameworks that serve as a tool kit for practitioners, academics and students. The range of topics covered in this book is wide and diverse, and represents both client and supplier perspectives on sourcing of global services. Various aspects related to the decision making process (e.g., asset transfer), learning mechanisms and organizational practices for managing outsourcing relationships are discussed in great depth. Contemporary sourcing models, including cloud services, are examined. Client dependency on the outsourcing provider, and social aspects, such as identity, are discussed in detail. Furthermore, resistance in outsourcing and failures are investigated to derive lessons as to how to avoid them and improve efficiency in outsourcing. Topics discussed in this book combine theoretical and practical insights regarding challenges that both clients and vendors face. Case studies from client and vendor organizations are used extensively throughout the book. Last but not least, the book examines current and future trends in outsourcing and offshoring, placing particular attention on the centrality of innovation in sourcing arrangements, and how innovation can be realized in outsourcing. The book is based on a vast empirical base brought together through years of extensive research by leading researchers in information systems, strategic management and operations.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Adaptive information filtering is a challenging research problem. It requires the adaptation of a representation of a user’s multiple interests to various changes in them. We investigate the application of an immune-inspired approach to this problem. Nootropia, is a user profiling model that has many properties in common with computational models of the immune system that have been based on Franscisco Varela’s work. In this paper we concentrate on Nootropia’s evaluation. We define an evaluation methodology that uses virtual user’s to simulate various interest changes. The results show that Nootropia exhibits the desirable adaptive behaviour.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.