45 resultados para Adaptive Learning Systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automatic ontology building is a vital issue in many fields where they are currently built manually. This paper presents a user-centred methodology for ontology construction based on the use of Machine Learning and Natural Language Processing. In our approach, the user selects a corpus of texts and sketches a preliminary ontology (or selects an existing one) for a domain with a preliminary vocabulary associated to the elements in the ontology (lexicalisations). Examples of sentences involving such lexicalisation (e.g. ISA relation) in the corpus are automatically retrieved by the system. Retrieved examples are validated by the user and used by an adaptive Information Extraction system to generate patterns that discover other lexicalisations of the same objects in the ontology, possibly identifying new concepts or relations. New instances are added to the existing ontology or used to tune it. This process is repeated until a satisfactory ontology is obtained. The methodology largely automates the ontology construction process and the output is an ontology with an associated trained leaner to be used for further ontology modifications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Original Paper European Journal of Information Systems (2001) 10, 135–146; doi:10.1057/palgrave.ejis.3000394 Organisational learning—a critical systems thinking discipline P Panagiotidis1,3 and J S Edwards2,4 1Deloitte and Touche, Athens, Greece 2Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK Correspondence: Dr J S Edwards, Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. E-mail: j.s.edwards@aston.ac.uk 3Petros Panagiotidis is Manager responsible for the Process and Systems Integrity Services of Deloitte and Touche in Athens, Greece. He has a BSc in Business Administration and an MSc in Management Information Systems from Western International University, Phoenix, Arizona, USA; an MSc in Business Systems Analysis and Design from City University, London, UK; and a PhD degree from Aston University, Birmingham, UK. His doctorate was in Business Systems Analysis and Design. His principal interests now are in the ERP/DSS field, where he serves as project leader and project risk managment leader in the implementation of SAP and JD Edwards/Cognos in various major clients in the telecommunications and manufacturing sectors. In addition, he is responsible for the development and application of knowledge management systems and activity-based costing systems. 4John S Edwards is Senior Lecturer in Operational Research and Systems at Aston Business School, Birmingham, UK. He holds MA and PhD degrees (in mathematics and operational research respectively) from Cambridge University. His principal research interests are in knowledge management and decision support, especially methods and processes for system development. He has written more than 30 research papers on these topics, and two books, Building Knowledge-based Systems and Decision Making with Computers, both published by Pitman. Current research work includes the effect of scale of operations on knowledge management, interfacing expert systems with simulation models, process modelling in law and legal services, and a study of the use of artifical intelligence techniques in management accounting. Top of pageAbstract This paper deals with the application of critical systems thinking in the domain of organisational learning and knowledge management. Its viewpoint is that deep organisational learning only takes place when the business systems' stakeholders reflect on their actions and thus inquire about their purpose(s) in relation to the business system and the other stakeholders they perceive to exist. This is done by reflecting both on the sources of motivation and/or deception that are contained in their purpose, and also on the sources of collective motivation and/or deception that are contained in the business system's purpose. The development of an organisational information system that captures, manages and institutionalises meaningful information—a knowledge management system—cannot be separated from organisational learning practices, since it should be the result of these very practices. Although Senge's five disciplines provide a useful starting-point in looking at organisational learning, we argue for a critical systems approach, instead of an uncritical Systems Dynamics one that concentrates only on the organisational learning practices. We proceed to outline a methodology called Business Systems Purpose Analysis (BSPA) that offers a participatory structure for team and organisational learning, upon which the stakeholders can take legitimate action that is based on the force of the better argument. In addition, the organisational learning process in BSPA leads to the development of an intrinsically motivated information organisational system that allows for the institutionalisation of the learning process itself in the form of an organisational knowledge management system. This could be a specific application, or something as wide-ranging as an Enterprise Resource Planning (ERP) implementation. Examples of the use of BSPA in two ERP implementations are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of strategy remains a debate for academics and a concern for practitioners. Published research has focused on producing models for strategy development and on studying how strategy is developed in organisations. The Operational Research literature has highlighted the importance of considering complexity within strategic decision making; but little has been done to link strategy development with complexity theories, despite organisations and organisational environments becoming increasingly more complex. We review the dominant streams of strategy development and complexity theories. Our theoretical investigation results in the first conceptual framework which links an established Strategic Operational Research model, the Strategy Development Process model, with complexity via Complex Adaptive Systems theory. We present preliminary findings from the use of this conceptual framework applied to a longitudinal, in-depth case study, to demonstrate the advantages of using this integrated conceptual model. Our research shows that the conceptual model proposed provides rich data and allows for a more holistic examination of the strategy development process. © 2012 Operational Research Society Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The two areas of theory upon which this research was based were „strategy development process?(SDP) and „complex adaptive systems? (CAS), as part of complexity theory, focused on human social organisations. The literature reviewed showed that there is a paucity of empirical work and theory in the overlap of the two areas, providing an opportunity for contributions to knowledge in each area of theory, and for practitioners. An inductive approach was adopted for this research, in an effort to discover new insights to the focus area of study. It was undertaken from within an interpretivist paradigm, and based on a novel conceptual framework. The organisationally intimate nature of the research topic, and the researcher?s circumstances required a research design that was both in-depth and long term. The result was a single, exploratory, case study, which included use of data from 44 in-depth, semi-structured interviews, from 36 people, involving all the top management team members and significant other staff members; observations, rumour and grapevine (ORG) data; and archive data, over a 5½ year period (2005 – 2010). Findings confirm the validity of the conceptual framework, and that complex adaptive systems theory has potential to extend strategy development process theory. It has shown how and why the strategy process developed in the case study organisation by providing deeper insights to the behaviour of the people, their backgrounds, and interactions. Broad predictions of the „latent strategy development? process and some elements of the strategy content are also possible. Based on this research, it is possible to extend the utility of the SDP model by including peoples? behavioural characteristics within the organisation, via complex adaptive systems theory. Further research is recommended to test limits of the application of the conceptual framework and improve its efficacy with more organisations across a variety of sectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the advent of distributed computer systems with a largely transparent user interface, new questions have arisen regarding the management of such an environment by an operating system. One fertile area of research is that of load balancing, which attempts to improve system performance by redistributing the workload submitted to the system by the users. Early work in this field concentrated on static placement of computational objects to improve performance, given prior knowledge of process behaviour. More recently this has evolved into studying dynamic load balancing with process migration, thus allowing the system to adapt to varying loads. In this thesis, we describe a simulated system which facilitates experimentation with various load balancing algorithms. The system runs under UNIX and provides functions for user processes to communicate through software ports; processes reside on simulated homogeneous processors, connected by a user-specified topology, and a mechanism is included to allow migration of a process from one processor to another. We present the results of a study of adaptive load balancing algorithms, conducted using the aforementioned simulated system, under varying conditions; these results show the relative merits of different approaches to the load balancing problem, and we analyse the trade-offs between them. Following from this study, we present further novel modifications to suggested algorithms, and show their effects on system performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we describe and model the language classroom as a complex adaptive system (see Logan & Schumann, 2005). We argue that linear, categorical descriptions of classroom processes and interactions do not sufficiently explain the complex nature of classrooms, and cannot account for how classroom change occurs (or does not occur), over time. A relational model of classrooms is proposed which focuses on the relations between different elements (physical, environmental, cognitive, social) in the classroom and on how their interaction is crucial in understanding and describing classroom action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Designers of self-adaptive systems often formulate adaptive design decisions, making unrealistic or myopic assumptions about the system's requirements and environment. The decisions taken during this formulation are crucial for satisfying requirements. In environments which are characterized by uncertainty and dynamism, deviation from these assumptions is the norm and may trigger 'surprises'. Our method allows designers to make explicit links between the possible emergence of surprises, risks and design trade-offs. The method can be used to explore the design decisions for self-adaptive systems and choose among decisions that better fulfil (or rather partially fulfil) non-functional requirements and address their trade-offs. The analysis can also provide designers with valuable input for refining the adaptation decisions to balance, for example, resilience (i.e. Satisfiability of non-functional requirements and their trade-offs) and stability (i.e. Minimizing the frequency of adaptation). The objective is to provide designers of self adaptive systems with a basis for multi-dimensional what-if analysis to revise and improve the understanding of the environment and its effect on non-functional requirements and thereafter decision-making. We have applied the method to a wireless sensor network for flood prediction. The application shows that the method gives rise to questions that were not explicitly asked before at design-time and assists designers in the process of risk-aware, what-if and trade-off analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In order to support the rigorous specification of adaptive systems requirements, this paper introduces RELAX, a new requirements language for self-adaptive systems that explicitly addresses uncertainty inherent in adaptive systems. We present the formal semantics for RELAX in terms of fuzzy logic, thus enabling a rigorous treatment of requirements that include uncertainty. RELAX enables developers to identify uncertainty in the requirements, thereby facilitating the design of systems that are, by definition, more flexible and amenable to adaptation in a systematic fashion. We illustrate the use of RELAX on smart home applications, including an adaptive assisted living system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Requirements are sensitive to the context in which the system-to-be must operate. Where such context is well-understood and is static or evolves slowly, existing RE techniques can be made to work well. Increasingly, however, development projects are being challenged to build systems to operate in contexts that are volatile over short periods in ways that are imperfectly understood. Such systems need to be able to adapt to new environmental contexts dynamically, but the contextual uncertainty that demands this self-adaptive ability makes it hard to formulate, validate and manage their requirements. Different contexts may demand different requirements trade-offs. Unanticipated contexts may even lead to entirely new requirements. To help counter this uncertainty, we argue that requirements for self-adaptive systems should be run-time entities that can be reasoned over in order to understand the extent to which they are being satisfied and to support adaptation decisions that can take advantage of the systems' self-adaptive machinery. We take our inspiration from the fact that explicit, abstract representations of software architectures used to be considered design-time-only entities but computational reflection showed that architectural concerns could be represented at run-time too, helping systems to dynamically reconfigure themselves according to changing context. We propose to use analogous mechanisms to achieve requirements reflection. In this paper we discuss the ideas that support requirements reflection as a means to articulate some of the outstanding research challenges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this roadmap paper is to summarize the state-of-the-art and to identify critical challenges for the systematic software engineering of self-adaptive systems. The paper is partitioned into four parts, one for each of the identified essential views of self-adaptation: modelling dimensions, requirements, engineering, and assurances. For each view, we present the state-of-the-art and the challenges that our community must address. This roadmap paper is a result of the Dagstuhl Seminar 08031 on "Software Engineering for Self-Adaptive Systems," which took place in January 2008. © 2009 Springer Berlin Heidelberg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modelling architectural information is particularly important because of the acknowledged crucial role of software architecture in raising the level of abstraction during development. In the MDE area, the level of abstraction of models has frequently been related to low-level design concepts. However, model-driven techniques can be further exploited to model software artefacts that take into account the architecture of the system and its changes according to variations of the environment. In this paper, we propose model-driven techniques and dynamic variability as concepts useful for modelling the dynamic fluctuation of the environment and its impact on the architecture. Using the mappings from the models to implementation, generative techniques allow the (semi) automatic generation of artefacts making the process more efficient and promoting software reuse. The automatic generation of configurations and reconfigurations from models provides the basis for safer execution. The architectural perspective offered by the models shift focus away from implementation details to the whole view of the system and its runtime change promoting high-level analysis. © 2009 Springer Berlin Heidelberg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behaviour of self adaptive systems can be emergent. The difficulty in predicting the system's behaviour means that there is scope for the system to surprise its customers and its developers. Because its behaviour is emergent, a self-adaptive system needs to garner confidence in its customers and it needs to resolve any surprise on the part of the developer during testing and mainteinance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system's behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, a means needs to be found to explain the current behaviour of the system and the reasons that brought that behaviour about. We propose the use of goal-based models during runtime to offer self-explanation of how a system is meeting its requirements, and why the means of meeting these were chosen. We discuss the results of early experiments in self-explanation, and set out future work. © 2012 C.E.S.A.M.E.S.