21 resultados para Abstraction.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sharing of near real-time traceability knowledge in supply chains plays a central role in coordinating business operations and is a key driver for their success. However before traceability datasets received from external partners can be integrated with datasets generated internally within an organisation, they need to be validated against information recorded for the physical goods received as well as against bespoke rules defined to ensure uniformity, consistency and completeness within the supply chain. In this paper, we present a knowledge driven framework for the runtime validation of critical constraints on incoming traceability datasets encapuslated as EPCIS event-based linked pedigrees. Our constraints are defined using SPARQL queries and SPIN rules. We present a novel validation architecture based on the integration of Apache Storm framework for real time, distributed computation with popular Semantic Web/Linked data libraries and exemplify our methodology on an abstraction of the pharmaceutical supply chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EPCIS specification provides an event oriented mechanism to record product movement information across stakeholders in supply chain business processes. Besides enabling the sharing of event-based traceability datasets, track and trace implementations must also be equipped with the capabilities to validate integrity constraints and detect runtime exceptions without compromising the time-to-deliver schedule of the shipping and receiving parties. In this paper we present a methodology for detecting exceptions arising during the processing of EPCIS event datasets. We propose an extension to the EEM ontology for modelling EPCIS exceptions and show how runtime exceptions can be detected and reported. We exemplify and evaluate our approach on an abstraction of pharmaceutical supply chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supply chains comprise of complex processes spanning across multiple trading partners. The various operations involved generate large number of events that need to be integrated in order to enable internal and external traceability. Further, provenance of artifacts and agents involved in the supply chain operations is now a key traceability requirement. In this paper we propose a Semantic web/Linked data powered framework for the event based representation and analysis of supply chain activities governed by the EPCIS specification. We specifically show how a new EPCIS event type called "Transformation Event" can be semantically annotated using EEM - The EPCIS Event Model to generate linked data, that can be exploited for internal event based traceability in supply chains involving transformation of products. For integrating provenance with traceability, we propose a mapping from EEM to PROV-O. We exemplify our approach on an abstraction of the production processes that are part of the wine supply chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Category hierarchy is an abstraction mechanism for efficiently managing large-scale resources. In an open environment, a category hierarchy will inevitably become inappropriate for managing resources that constantly change with unpredictable pattern. An inappropriate category hierarchy will mislead the management of resources. The increasing dynamicity and scale of online resources increase the requirement of automatically maintaining category hierarchy. Previous studies about category hierarchy mainly focus on either the generation of category hierarchy or the classification of resources under a pre-defined category hierarchy. The automatic maintenance of category hierarchy has been neglected. Making abstraction among categories and measuring the similarity between categories are two basic behaviours to generate a category hierarchy. Humans are good at making abstraction but limited in ability to calculate the similarities between large-scale resources. Computing models are good at calculating the similarities between large-scale resources but limited in ability to make abstraction. To take both advantages of human view and computing ability, this paper proposes a two-phase approach to automatically maintaining category hierarchy within two scales by detecting the internal pattern change of categories. The global phase clusters resources to generate a reference category hierarchy and gets similarity between categories to detect inappropriate categories in the initial category hierarchy. The accuracy of the clustering approaches in generating category hierarchy determines the rationality of the global maintenance. The local phase detects topical changes and then adjusts inappropriate categories with three local operations. The global phase can quickly target inappropriate categories top-down and carry out cross-branch adjustment, which can also accelerate the local-phase adjustments. The local phase detects and adjusts the local-range inappropriate categories that are not adjusted in the global phase. By incorporating the two complementary phase adjustments, the approach can significantly improve the topical cohesion and accuracy of category hierarchy. A new measure is proposed for evaluating category hierarchy considering not only the balance of the hierarchical structure but also the accuracy of classification. Experiments show that the proposed approach is feasible and effective to adjust inappropriate category hierarchy. The proposed approach can be used to maintain the category hierarchy for managing various resources in dynamic application environment. It also provides an approach to specialize the current online category hierarchy to organize resources with more specific categories.