25 resultados para AXIAL DIVERGENCE
Resumo:
One of the most fundamental problem that we face in the graph domain is that of establishing the similarity, or alternatively the distance, between graphs. In this paper, we address the problem of measuring the similarity between attributed graphs. In particular, we propose a novel way to measure the similarity through the evolution of a continuous-time quantum walk. Given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic, and where a subset of the edges is labeled with the similarity between the respective nodes. With this compositional structure to hand, we compute the density operators of the quantum systems representing the evolution of two suitably defined quantum walks. We define the similarity between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators, and then we show how to build a novel kernel on attributed graphs based on the proposed similarity measure. We perform an extensive experimental evaluation both on synthetic and real-world data, which shows the effectiveness the proposed approach. © 2013 Springer-Verlag.
Resumo:
The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The Surface Nanoscale Axial Photonics (SNAP) platform will be reviewed. This platform enables creation of miniature ultralow loss resonant photonic circuits with unprecedented subangstrom precision. The prospective slow light SNAP optofluidic sensors will be described. © 2015 OSA.
Resumo:
We consider an optical fiber with a nanoscale variation of the effective fiber radius that supports whispering gallery modes slowly propagating along the fiber, and reveal that the radius variation can be designed to support the reflectionless propagation of these modes. We show that reflectionless modulations can realize control of the transmission amplitude and temporal delay, while enabling close packing due to the absence of cross talk, in contrast to the conventional potentials.
Resumo:
We present data on the development a new type of optical fibre polariser and the characterisation of its wavelength properties. The device is fashioned using a two step process. Firstly, a standard UV long period grating (LPG) with a period of 330μm is inscribed into hydrogenated SMF-28, followed by femtosecond laser ablation of a groove parallel to the fibre axis. The UV inscribed LPGs have inherently low birefringence. However, the removal of the cladding layer parallel to the location of the LPG within the fibre core (as a result the ablation) modifies the cladding modes that couple with the LPG. Furthermore, the groove breaks the fibre symmetry introducing a non-uniform stress profile across the fibre cross section leading to significant birefringence. We show that increasing the depth of the groove increases the birefringence, and this behaviour coupled with the ability to control the wavelength location of the LPGs attenuations peaks results in a polariser able to operate at almost any wavelength and birefringence. The maximum birefringence reported here as polarisation mode splitting was approximately 39±0.1nm with a polarisation loss of 10dB. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Surface nanoscale axial photonics (SNAP) structures are fabricated with a femtosecond laser for the first time, to the best of our knowledge. The inscriptions introduced by the laser pressurize the fiber and cause its nanoscale effective radius variation. We demonstrate the subangstrom precise fabrication of individual and coupled SNAP microresonators having the effective radius variation of several nanometers. Our results pave the way to a novel ultraprecise SNAP fabrication technology based on the femtosecond laser inscription.
Resumo:
PURPOSE: To assess the correlation between changes in corneal aberrations and the 2-year change in axial length in children fitted with orthokeratology (OK) contact lenses. METHODS: Thirty-one subjects 6 to 12 years of age and with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were fitted with OK. Measurements of axial length and corneal topography were taken at regular intervals over a 2-year period. Corneal topography at baseline and after 3 and 24 months of OK lens wear was used to derive higher-order corneal aberrations (HOA) that were correlated with OK-induced axial length changes at 2 years. RESULTS: Significant changes in C3, C4, C4, root mean square (RMS) secondary astigmatism and fourth and total HOA were found with both 3 and 24 months of OK lens wear in comparison with baseline (all P0.05). Coma angle of orientation changed significantly pre-OK in comparison with 3 and 24 months post-OK as well as secondary astigmatism angle of orientation pre-OK in comparison with 24 months post-OK (all P0.05). DISCUSSION: Short-term and long-term OK lens wear induces significant changes in corneal aberrations that are not significantly correlated with changes in axial elongation after 2-years.
Resumo:
In this article, we highlight the significance and need for conducting context-specific human resource management (HRM) research, by focusing on four critical themes. First, we discuss the need to analyze the convergence-divergence debate on HRM in Asia-Pacific. Next, we present an integrated framework, which would be very useful for conducting cross-national HRM research designed to focus on the key determinants of the dominant national HRM systems in the region. Following this, we discuss the critical challenges facing the HRM function in Asia-Pacific. Finally, we present an agenda for future research by presenting a series of research themes.
Resumo:
PURPOSE: To assess the relationship between short-term and long-term changes in power at different corneal locations relative to the change in central corneal power and the 2-year change in axial elongation relative to baseline in children fitted with orthokeratology contact lenses (OK). METHODS: Thirty-one white European subjects 6 to 12 years of age and with myopia −0.75 to −4.00 DS and astigmatism ≤1.00 DC were fitted with OK. Differences in refractive power 3 and 24 months post-OK in comparison with baseline and relative to the change in central corneal power were determined from corneal topography data in eight different corneal regions (i.e., N[nasal]1, N2, T[temporal]1, T2, I[inferior]1, I2, S[superior]1, S2), and correlated with OK-induced axial length changes at two years relative to baseline. RESULTS: After 2 years of OK lens wear, axial length increased by 0.48±0.18 mm (P0.05). CONCLUSION: The reduction in central corneal power and relative increase in paracentral and pericentral power induced by OK over 2 years were not significantly correlated with concurrent changes in axial length of white European children.