25 resultados para ARRAY ILLUMINATOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the development of a WDM optical sensor array interrogation system using the radiation modes from a BFBG. We present results indicating 70nm bandwidth, with 0.2um RMS noise and a minimum WDM spacing of 30um. We further show the system to be polarization independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated information transmission in an array of threshold units that have signal-dependent noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprathreshold stochastic resonance with additive noise and show that information transmission can be enhanced by a nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, information rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate selection of parameters, we observe that the information can be made to be (almost) independent of the level of the noise, thus providing a robust method of transmitting information in the presence of noise. These result could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems is not limited by the level of signal-dependent noise. © 2007 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2 × 10-5 in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical fibre strain sensors using Fibre Bragg Gratings (FBGs) are poised to play a major role in structural health monitoring in a variety of application from aerospace to civil engineering. At the heart of technology is the optoelectronic instrumentation required to convert optical signals into measurands. Users are demanding compact, lightweight, rugged and low cost solutions. This paper describes development of a new device based on a blazed FBG and CCD array that can potentially meet the above demands. We have shown that this very low cost technique may be used to interrogate a WDM array of sensor gratings with highly accurate and highly repeatable results unaffected by the polarisation state of the radiation. In this paper, we present results showing that sensors may be interrogated with an RMS error of 1.7pm, drift below 0.12pm and dynamic range of up to 65nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel modulator array integrating eight GaAs electro-optic IQ modulators is characterized and tested over long-reach direct-detected multi-band OFDM-PONs. The GaAs IQ modulators present > 22 GHz bandwidth with 3V Vpi, being suitable for a 100-km 40-Gb/s OOFDM-PON supporting up to 1024 users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic (PV) stations have been widely built in the world to utilize solar energy directly. In order to reduce the capital and operational costs, early fault diagnosis is playing an increasingly important role by enabling the long effective operation of PV arrays. This paper analyzes the terminal characteristics of faulty PV strings and arrays, and it develops a PV array fault diagnosis technique. The terminal current-voltage curve of a faulty PV array is divided into two sections, i.e., high-voltage and low-voltage fault diagnosis sections. The corresponding working points of healthy string modules and of healthy and faulty modules in an unhealthy string are then analyzed for each section. By probing into different working points, a faulty PV module can be located. The fault information is of critical importance for the maximum power point tracking and the array dynamical reconfiguration. Furthermore, the string current sensors can be eliminated, and the number of voltage sensors can be reduced by optimizing voltage sensor locations. Typical fault scenarios including monostring, multistring, and a partial shadow for a 1.6-kW 3 $times$ 3 PV array are presented and experimentally tested to confirm the effectiveness of the proposed fault diagnosis method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers. The cooperative nature of the system results in a self-organization process which enhances the coherence of the single element of the population too and can have broad impact for detection purposes, for building all-optical simulators of neural networks and in the field of photonics-based computation.