18 resultados para AQP-1 and AQP-9
Resumo:
Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys520 (mouse Cys533). In addition, an HIF-1α Cys520 serine mutant is resistant to 2-AAPA–induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys520 promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles
Resumo:
The diagnosis of prosthetic joint infection and its differentiation from aseptic loosening remains problematic. The definitive laboratory diagnostic test is the recovery of identical infectious agents from multiple intraoperative tissue samples; however, interpretation of positive cultures is often complex as infection is frequently associated with low numbers of commensal microorganisms, in particular the coagulase-negative staphylococci (CNS). In this investigation, the value of serum procalcitonin (PCT), interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1) as predictors of infection in revision hip replacement surgery is assessed. Furthermore, the diagnostic value of serum IgG to short-chain exocellular lipoteichoic acid (sce-LTA) is assessed in patients with infection due to CNS. Presurgical levels of conventional serum markers of infection including C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cell count (WBC) is also established. Forty-six patients undergoing revision hip surgery were recruited with a presumptive clinical diagnosis of either septic (16 patients) or aseptic loosening (30 patients). The diagnosis was confirmed microbiologically and levels of serum markers were determined. Serum levels of IL-6 and sICAM-1 were significantly raised in patients with septic loosening (P=0.001 and P=0.0002, respectively). Serum IgG to sce-LTA was elevated in three out of four patients with infection due to CNS. In contrast, PCT was not found to be of value in differentiating septic and aseptic loosening. Furthermore, CRP, ESR and WBC were significantly higher (P=0.0001, P=0.0001 and P=0.003, respectively) in patients with septic loosening. Serum levels of IL-6, sICAM-1 and IgG to sce-LTA may provide additional information to facilitate the diagnosis of prosthetic joint infection.
Resumo:
INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.