45 resultados para ALKANE MONOLAYERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. A successful model should exhibit tight junction formation, maintenance of differentiation and polarity. Conditions for primary culture of guinea-pig gastric mucous epithelial cell monolayers on Tissue Culture Plastic (TCP) and membrane insects (Transwells) were established. Tight junction formation for cells grown on Transwells for three days was assessed by measurement of transepithelial resistance (TEER) and permeability of mannitol and fluorescein. Coating the polycarbonate filter with collagen IV, rather with collagen I, enhanced tight junction formation. TEER for cells grown on Transwells coated with collagen IV was close to that obtained with intact guinea-pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [3H] glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on TCP, but no major difference was found between cells grown on collagens I and IV. However, monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide. The proportion of cells, which stained positively for mucin with periodic Schiff reagent, was greater than 95% for all culture conditions. Gastric epithelial monolayers grown on Transwells coated with collagen IV were able to withstand transient (30 min) apical acidification to pH 3, which was associated with a decrease in [3H] mannitol flux and an increase in TEER relative to pH 7.4. The model was used to provide the first direct demonstration that an NSAID (indomethacin) accumulated in gastric epithelial cells exposed to low apical pH. In conclusion, guinea-pig epithelial cells cultured on collagen IV represent a promising model of the gastric surface epithelium suitable for screening procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of surfactant monolayers is certainly not a new technique, but the application of monolayer studies to elucidate controlling factors in liposome design remains an underutilised resource. Using a Langmuir-Blodgett trough, pure and mixed lipid monolayers can be investigated, both for their interactions within the monolayer, and for interfacial interactions with drugs in the aqueous sub-phase. Despite these monolayers effectively being only half a bilayer, with a flat rather than curved structure, information from these studies can be effectively translated into liposomal systems. Here we outline the background, general protocols and application of Langmuir studies with a focus on their application in liposomal systems. A range of case studies are discussed which show how the system can be used to support its application in the development of liposome drug delivery. Examples include investigations into the effect of cholesterol within the liposome bilayer, understanding effective lipid packaging within the bilayer to promote water soluble and poorly soluble drug retention, the effect of alkyl chain length on lipid packaging, and drug-monolayer electrostatic interactions that promote bilayer repackaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the problems arising from the inherent instability of emulsions are discussed. Aspects of emulsion stability are described and particular attention is given to the influence of the chemical nature of the dispersed phase on adsorbed film structure and stability, Emulsion stability has been measured by a photomicrographic technique. Electrophoresis, interfacial tension and droplet rest-time data were also obtained. Emulsions were prepared using a range of oils, including aliphatic and aromatic hydrocarbons, dispersed In a solution of sodium dodecyl sulphate. In some cases a small amount of alkane or alkanol was incorporated into the oil phase. In general the findings agree with the classical view that the stability of oil-in-water emulsions is favoured by a closely packed interfacial film and appreciable electric charge on the droplets. The inclusion of non-ionic alcohol leads to enhanced stability, presumably owing to the formation of a "mixed" interfacial film which is more closely packed and probably more coherent than that of the anionic surfactant alone. In some instances differences in stability cannot he accounted for simply by differences in interfacial adsorption or droplet charge. Alternative explanations are discussed and it is postulated that the coarsening of emulsions may occur not only hy coalescence but also through the migration of oil from small droplets to larger ones by molecular diffusion. The viability of using the coalescence rates of droplets at a plane interface as a guide to emulsion stability has been researched. The construction of a suitable apparatus and the development of a standard testing procedure are described. Coalescence-time distributions may be correlated by equations similar to those presented by other workers, or by an analysis based upon the log-normal function. Stability parameters for a range of oils are discussed in terms of differences in film drainage and the natl1re of the interfacial film. Despite some broad correlations there is generally poor agreement between droplet and emulsion stabilities. It is concluded that hydrodynamic factors largely determine droplet stability in the systems studied. Consequently droplet rest-time measurements do not provide a sensible indication of emulsion stability,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIDS dementia complex is a common neurological syndrome thought to result from the invasion of the CNS by HIV. Phosphonoformate has anti-HIV activity but due to its charged nature is excluded from the CNS by the blood-brain barrier. Lipophilic triesters of phosphonoformate designed to improve transport properties are unsuitable prodrugs due to their rapid and complicated hydrolysis, involving competitive P-O and P-C bond cleavage. Diesters, though hydrolytically stable, are considered too polar to passively diffuse into the CNS. Hydrophilic drugs mimicking endogenous nutrients are known to be actively transported across the blood-brain barrier. In this thesis the possibility that diesters of phosphonoformate may be actively transported is investigated. Triesters of phosphonoformate with labile aryl carboxyl esterrs were synthesised and their hydrolysis followed by 31P NMR spectroscopy. The triesters were found to undergo rapid hydrolysis via P-C bond cleavage to the phosphite. Phosphonoformate diesters designed to be analogues of actively transported -keto acids have been synthesised and fully characterised. Tyrosine-phosphonoformate and lipid-phosphonoformate conjugates have also been synthesised and characterised. An in vitro model of the blood-brain barrier utilising confluent monolayers of porcine brain microvessel endothelial cells grown on a permeable support has been established. The presence of enzyme and antigen markers specific to the blood-brain barrier has been demonstrated for the endothelial cells and the diffusional properties of the model investigated with hydrophilic and lipophilic compounds. Active transport systems for -keto acids and large amino acids have been identified in the endothelial cell monolayers using 14C-pyruvate and 3H-L-tyrosine respectively. Temperature and concentration dependence of the two systems have been demonstrated and transport constants calculated. Competition with 14C-pyruvate transport was shown with other monocarboxylic acids including the anti-epileptic drug valproate. Stereospecificity was shown in that L-lactate inhibited pyruvate transport while D-lactate did not. Sodium methyl methoxycarbonylphosphonate, a phosphonoformate diester was shown not to compete for 14C-pyruvate transport indicating that this compound has no affinity for the carrier. Competition with 3H-L-tyrosine transport was shown with other large amino acids, including the anti-Parkinsonian agent L-dopa. Stereospecificity was shown using L- and D-tyrosine and L- and D-dopa. The tyrosine-phosphonoformate conjugate, which was stable under the experimental conditions, was shown to compete with 3H-Ltyrosine transport indicating that it may be actively transported at the blood-brain barrier. Thirty two triesters, diesters and monoesters of phosphonoformate, showed no activity in an anti-HIV screen above that attributable to hydrolysis to the parent compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laboratory-based research aimed at understanding processes regulating insulin secretion and mechanisms underlying ß-cell dysfunction and loss in diabetes often makes use of rodents, as these processes are in many respects similar between rats/mice and humans. Indeed, a rough calculation suggests that islets have been isolated from as many as 150,000 rodents to generate the data contained within papers published in 2009 and the first four months of 2010. Rodent use for islet isolation has been mitigated, to a certain extent, by the availability of a variety of insulin-secreting cell lines that are used by researchers world-wide. However, when maintained as monolayers the cell lines do not replicate the robust, sustained secretory responses of primary islets which limits their usefulness as islet surrogates. On the other hand, there have been several reports that configuration of MIN6 ß-cells, derived from a mouse insulinoma, as three-dimensional cell clusters termed ‘pseudoislets’ largely recapitulates the function of primary islet ß-cells. The Diabetes Research Group at King’s College London has been using the MIN6 pseudoislet model for over a decade and they hosted a symposium on “Pseudoislets as primary islet replacements for research”, which was funded by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), in London on 15th and 16th April 2010. This small, focused meeting was conceived as an opportunity to consolidate information on experiences of working with pseudoislets between different UK labs, and to introduce the theory and practice of pseudoislet culture to laboratories working with islets and/or ß-cell lines but who do not currently use pseudoislets. This short review summarizes the background to the development of the cell line-derived pseudoislet model, the key messages arising from the symposium and emerging themes for future pseudoislet research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could be used to create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayer forming, whilst asymmetric lipids formed less condensed monolayers. However this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Lipids play a vital role at interfaces such as the tear film in the protection of the anterior eye. Their role is to act as lubricants and reduce surface and interfacial tension. Although there is a lack of appropriate methods to solubilize and dilute phospholipids to the tear film. Here, we report that styrene-maleic acid copolymers (PSMA), can form polymer–lipid complexes in the form of monodisperse nanometric particles, which can easily solubilise these phospholipid molecules by avoiding for example, the use of any kind of surfactant. Method: The interactions of PSMA with phospholipids have been studied by its adsorption from aqueous solutions into monolayers of dimyristoyl-phosphorylcholine (DMPC). The Langmuir trough (LT) technique is used to study this pH-dependant complex formation. The formed nanoparticles have been also analysed by 31P NMR, particle size distribution by light scattering (DLS) and morphology by electron microscopy (SEM). Results: The LT has been found to be a useful technique for in vitro simulation of in vivo lipid layer behaviour: The limiting surface pressure of unstable tear films ranges between 20 and 30 mN/m. More stable tear films show an increase in surface pressure, within the range of 35–45 mN/m. The DMPC monolayers have a limiting surface pressure of 38 mN/m (water), and 45 mN/m (pH 4 buffer), and the PSMA-DMPC complexes formed at pH 4 have a value of 42 mN/m, which resembles that of the stable tear film. The average particle size distribution is 53 ± 10 nm with a low polydispersity index (PDI) of 0.24 ± 0.03. Conclusions: New biocompatible and cheap lipid solubilising agents such as PSMA can be used for the study of the tear film composition and properties. These polymer–lipid complexes in the form of nanoparticles can be used to solubilise and release in a controlled way other hydrophobic molecules such as some drugs or proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The transferrin receptor (CD71) is up-regulated in duodenal biopsy samples from patients with active celiac disease and promotes retrotransport of secretory immunolglobulin A (SIgA)-gliadin complexes. We studied intestinal epithelial cell lines that overexpress CD71 to determine how interactions between SIgA and CD71 promote transepithelial transport of gliadin peptides. METHODS: We analyzed duodenal biopsy specimens from 8 adults and 1 child with active celiac disease. Caco-2 and HT29-19A epithelial cell lines were transfected with fluorescence-labeled small interfering RNAs against CD71. Interactions among IgA, CD71, and transglutaminase 2 (Tgase2) were analyzed by flow cytometry, immunoprecipitation, and confocal microscopy. Transcytosis of SIgACD71 complexes and intestinal permeability to the gliadin 3H-p3149 peptide were analyzed in polarized monolayers of Caco-2 cells. RESULTS: Using fluorescence resonance energy transfer and in situ proximity ligation assays, we observed physical interactions between SIgA and CD71 or CD71 and Tgase2 at the apical surface of enterocytes in biopsy samples and monolayers of Caco-2 cells. CD71 and Tgase2 were co-precipitated with SIgA, bound to the surface of Caco-2 cells. SIgACD71 complexes were internalized and localized in early endosomes and recycling compartments but not in lysosomes. In the presence of celiac IgA or SIgA against p3149, transport of intact 3H-p3149 increased significantly across Caco-2 monolayers; this transport was inhibited by soluble CD71 or Tgase2 inhibitors. CONCLUSIONS: Upon binding to apical CD71, SIgA (with or without gliadin peptides) enters a recycling pathway and avoids lysosomal degradation; this process allows apicalbasal transcytosis of bound peptides. This mechanism is facilitated by Tgase2 and might be involved in the pathogenesis of celiac disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross-linking of the shell, allowing production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilisation. The PDMA component of adsorbed polymer shell confers the latex particle thermal and pH responsive characteristics, it also provides glass transitions at lower temperatures than that of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilisation of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilisation is achieved through thermal annealing or cross-linking of the shell at mild conditions feasible for large scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 ºC by using the lower glass transition temperature of the shell compared to that of the polystyrene cores (~108 ºC). The colloidosome microcapsules formed have a rigid membrane basically composed of a monolayer of particles. Chemical cross-linking has also been successfully achieved by confining a cross-linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations since inter-droplet cross-linking is thus avoided. The porosity and mechanical strength of microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. © 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, selected results obtained so far on Fe(II) spin crossover compounds of 1,2,4-triazole, isoxazole and tetrazole derivatives are summarized and analysed. These materials include the only compounds known to have Fe(II)N6 spin crossover chromophores consisting of six chemically identical heterocyclic ligands. Particular attention is paid to the coordination modes for substituted 1,2,4-triazole derivatives towards Fe(II) resulting in polynuclear and mononuclear compounds exhibiting Fe(II) spin transitions. Furthermore, the physical properties of mononuclear Fe(II) isoxazole and 1-alkyl-tetrazole compounds are discussed in relation to their structures. It will also be shown that the use of α,β- and α,ω-bis(tetrazol-1-yl)alkane type ligands allowed a novel strategy towards obtaining polynuclear Fe(II) spin crossover materials.