19 resultados para ALDEHYDES
Resumo:
Various room temperature ionic liquids (RTILs), notably, 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MeOEtMIM]+[CF3COO]ˉ , have been used to promote the Knoevenagel condensation to afford substituted olefins. All reactions proceeded effectively in the absence of any other catalysts or co-solvents with good to excellent yields. This method is simple and applicable to reactions involving a wide range of aldehydes and ketones with methylene compounds. The ionic liquid can be recycled without noticeable reduction of its catalytic activity. A plausible reaction mechanism is proposed.
Resumo:
The term oxylipin is applied to the generation of oxygenated products of polyunsaturated fatty acids that can arise either through non-enzymatic or enzymatic processes generating a complex array of products, including alcohols, aldehydes, ketones, acids and hydrocarbon gases. The biosynthetic origin of these products has revealed an array of enzymes involved in their formation and more recently a radical pathway. These include lipoxygenases and α-dioxygenase that insert both oxygen atoms in to the acyl chain to initiate the pathways, to specialised P450 monooxygenases that are responsible for their downstream processing. This latter group include enzymes at the branch points such as allene oxide synthase, leading to jasmonate signalling, hydroperoxide lyase, responsible for generating pathogen/pest defensive volatiles and divinyl ether synthases and peroxygenases involved in the formation of antimicrobial compounds. The complexity of the products generated raises significant challenges for their rapid identification and quantification using metabolic screening methods. Here the current developments in oxylipin metabolism are reviewed together with the emerging technologies required to expand this important field of research that underpins advances in plant-pest/pathogen interactions.
Resumo:
Findings on growth regulating activities of the end-product of lipid peroxidation 4-hydroxy-2-nonenal (HNE), which acts as a “second messenger of free radicals”, overlapped with the development of antibodies specific for the aldehyde-protein adducts. These led to qualitative immunochemical determinations of the HNE presence in various pathophysiological processes and to the change of consideration of the aldehyde’s bioactivities from toxicity into cell signalling. Moreover, findings of the HNE-protein adduct in various organs under physiological circumstances support the concept of “oxidative homeostasis”, which implies that oxidative stress and lipid peroxidation are not only pathological but also physiological processes. Reactive aldehydes, at least HNE, could play important role in oxidative homeostasis, while complementary research approaches might reveal the relevance of the aldehydic-protein adducts as major biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. Aiming to join efforts in such research activities researchers interacting through the International 4-Hydroxynonenal Club acting within the SFRR-International and through networking projects of the system of the European Cooperation in Science and Technology (COST) carried validation of the methods for lipid peroxidation and further developed the genuine 4-HNE-His ELISA founding quantitative and qualitative methods for detection of 4-HNE-His adducts as valuable tool to study oxidative stress and lipid peroxidation in cell cultures, various organs and tissues and eventually for human plasma and serum analyses [1]. Reference: 1. Weber, Daniela. Lidija, Milkovic. Measurement of HNE-protein adducts in human plasma and serum by ELISA—Comparison of two primary antibodies. Redox Biol. 2013. 226-233.
Resumo:
Pt catalyst series were prepared on mesoporous SBA-15, SBA-16, KIT-6, true liquidcrystal-templated meso-macroporous SBA-15 and a commercial, low surface area silicasupport. Support structure can be easily fabricated using surfactant templating as a mode ofstringent control on porosity, surface area and internal structure. The impact of varying Pt-support physicochemical properties was systematically studied for the selective transformation of allylic substrates under chemoselective oxidation and hydrogenation regimes, a class of reactions highly applicable to industry. Pt-based heterogeneous catalysts are well-known for their utilisation in the hydrogenation of α,β-unsaturated aldehydes,although the mode of action and lack of systematic studies in the literature fuels continuing debate into the role of Pt nanoparticles and support choice for this area. This project attempts to shed some light on several frequently asked questions in this field. Successful support synthesis and stability after Pt impregnation is confirmed through HRTEM, XRD and N2 porosimetry. Decreasing metal loading promoted dispersion values,regardless of support choice, with surface PtO2 content also showing visible enhancement.Increasing support surface area and mesoporosity exhibited the following trend on Pt dispersion augmentation; low surface area commercial silica < true liquid crystal-templated SBA-15 < SBA-15 < SBA-16 ~ KIT-6. For the selective oxidation of cinnamyl alcohol,increasing PtO2 surface population confers substantial rate enhancements, with turnover frequencies evidencing PtO2 to be the active species .In the Pt-catalysed hydrogenation of cinnamaldehyde, strong support insensitivity was observed towards catalytic activity; as turnover frequencies normalised to Pt metal reveal constant values. However, structure sensitivity to the desired unsaturated alcohol arose,evidencing the requirement of flat, extended Pt (111) facets for C=O hydrogenation. Pt/SBA-15 proved the most selective, reflecting suppressed cinnamyl alcohol hydrogenation, with DRIFTS and in-situ ATR-IR evidencing the key role of support polarity in re-orientation of cinnamaldehyde to favour di-σCO adsorption and C=O versus C=C hydrogenation. High pressures increased activity, whilst a dramatic shift in selectivity from dominant C=C (1 bar)to C=O hydrogenation (10 bar) was also observed, attributed to surface crowding and suppression of di-σCC and η4 di-σCO+πC=C cinnamaldehyde binding modes.