22 resultados para 4N-[1,2,4]-triazole
Resumo:
The first syntheses of the natural products myo-inositol 1,2,3-trisphosphate and (+/-)-myo-inositol 1,2-bisphosphate are described. The protected key intermediates 4,5,6-tri-O-benzoyl-myo-inositol and (+/-)-3,4,5,6-tetra-O-benzyl-myo-inositol were phosphorylated with dibenzyl N,N-di-isopropylphosphoramidite in the presence of 1H-tetrazole and subsequent oxidation of the phosphite. The crystal structures of the synthetic intermediates (+/-)-1-O-(tert-butyldiphenylsilyl)-2,3,O-cyclohexylidene-myo-inos itol and (+/-)-4,5,6-tri-O-benzoyl-1-O-(tert-butyldiphenylsilyl)-2,3-O-cycl ohexylidene- myo-inositol are reported. myo-Inositol 1,2,3-trisphosphate (+/-)-myo-inositol 1,2-bisphosphate, and all isomeric myo-inositol tetrakisphosphates were evaluated for their ability to alter HO. production in the iron-catalysed Haber-Weiss reaction. The results demonstrated that a 1,2,3-grouping of phosphates in myo-inositol was necessary for inhibition also that (+/-)-myo-inositol 1,2-bisphosphate potentiated HO. production. myo-Inositol 1,2,3-trisphosphate resembled myo-inositol hexakisphosphate (phytic acid) in its ability to act as a siderophore by promoting iron-uptake into Pseudomonas aeruginosa.
Resumo:
Tissue transglutaminase (TG2) can induce post-translational modification of proteins, resulting in protein cross-linking or incorporation of polyamines into substrates, and can also function as a signal transducing G protein. The role of TG2 in the formation of insoluble cross-links has led to its implication in some neurodegenerative conditions. Exposure of pre-differentiated SH-SY5Y cells to the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) resulted in significant dose-dependent reductions in TG2 protein levels, measured by probing Western blots with a TG2-specific antibody. Transglutaminase (TG) transamidating activity, on the other hand, monitored by incorporation of a polyamine pseudo-substrate into cellular proteins, was increased. Inhibitors of TG (putrescine) and TG2 (R283) exacerbated MPP+ toxicity, suggesting that activation of TG2 may promote a survival response in this toxicity paradigm.
Resumo:
The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.
Resumo:
A feasibility of formation of donor-acceptor charge-transfer (CT) complexes between melanin and 2,4,7-trinitrofluorenone (TNF) being good electron acceptor has been studied in solutions by means of the absorption and photoluminescence (PL) spectra. The model of electronic transitions in a melanin-TNF composite solution has been proposed. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
The random distributed feedback fiber laser operating via the stimulated Raman scattering and random distributed feedback based on the Rayleigh scattering is demonstrated in the 1.2 μm frequency band. The RDFB fiber laser generates at 1174 nm up to 2.4 W of output power with corresponding slope efficiency more than 30%. The output radiation has the spectral shape similar to the conventional Raman fiber lasers and spectral width less than 1.7 nm. © 2011 Pleiades Publishing, Ltd.
Resumo:
The metal catalyzed hydrogenolysis of the biomass-derived THF-dimethanol to 1,2,6-hexanetriol using heterogeneous catalysts was investigated. Bimetallic Rh-Re catalysts (4 wt% Rh and a Re/Rh (mol. ratio of 0.5) on a silica support gave the best performance and 1,2,6-hexanetriol was obtained in 84% selectivity at 31% conversion (120 C, 80 bar, 4 h); the selectivity reaches a maximum of 92% at 80 C. The product distribution at prolonged reaction times or higher temperatures or both shows the formation of diols and mono-alcohols, indicating that the 1,2,6-hexanetriol is prone to subsequent hydrodeoxygenation reactions. Different silica supports were investigated and optimal results were obtained with an amorphous silica featuring an intermediate surface area and an average mesopore size of about 6 nm. TPR and XPS surface analysis support the presence of mixed Rh and Re particles. The redox Reδ+/ReTotal surface ratio correlates with the conversion in a volcano type dependency. Both gas phase as well as Rh200Re1OH cluster DFT calculations support an acid-metal bifunctional mechanism and explain the products distribution. © 2013 Elsevier B.V. All rights reserved.
Resumo:
myo-Inositol phosphates possessing the 1,2,3-trisphosphate motif share the remarkable ability to completely inhibit iron-catalysed hydroxyl radical formation. The simplest derivative, myo-inositol 1,2,3-trisphosphate [Ins(1,2,3)P3], has been proposed as an intracellular iron chelator involved in iron transport. The binding conformation of Ins(1,2,3)P3 is considered to be important to complex Fe3+ in a 'safe' manner. Here, a pyrene-based fluorescent probe, 4,6-bispyrenoyl-myo-inositol 1,2,3,5-tetrakisphosphate [4,6-bispyrenoyl Ins(1,2,3,5)P4], has been synthesised and used to monitor the conformation of the 1,2,3-trisphosphate motif using excimer fluorescence emission. Ring-flip of the cyclohexane chair to the penta-axial conformation occurs upon association with Fe3+, evident from excimer fluorescence induced by π-π stacking of the pyrene reporter groups, accompanied by excimer formation by excitation at 351 nm. This effect is unique amongst biologically relevant metal cations, except for Ca 2+ cations exceeding a 1:1 molar ratio. In addition, the thermodynamic constants for the interaction of the fluorescent probe with Fe3+ have been determined. The complexes formed between Fe 3+ and 4,6-bispyrenoyl Ins(1,2,3,5)P4 display similar stability to those formed with Ins(1,2,3)P3, indicating that the fluorescent probe acts as a good model for the 1,2,3-trisphosphate motif. This is further supported by the antioxidant properties of 4,6-bispyrenoyl Ins(1,2,3,5)P4, which closely resemble those obtained for Ins(1,2,3)P3. The data presented confirms that Fe3+ binds tightly to the unstable penta-axial conformation of myo-inositol phosphates possessing the 1,2,3-trisphosphate motif. © 2010 The Royal Society of Chemistry.