28 resultados para 3D numerical modeling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface residual stresses in SiC particle-reinforced Al matrix composites are measured using a recently developed nanoindentation technique. The tensile biaxial residual stress in Al is found to increase with the particle concentration. The stress magnitudes are in reasonable agreement with those from numerical modeling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical regeneration is an attractive method to improve the performance of long-distance data transmission, though its application in high-speed fiber systems requires careful design consideration/optimization. In this letter we investigate 40 Gbit/s dispersion-managed fiber transmission with optical 2R regeneration based on quantum well saturable absorber and highly non-linear fiber. We demonstrate through numerical modeling a feasibility of a single channel transmission over 10,000 km using optimized system design. © 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. © 2013 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a scheme for multilevel (nine or more) amplitude regeneration based on a nonlinear optical loop mirror (NOLM) and demonstrate through numerical modeling its efficiency and cascadability on circular 16-, 64-, and 256- symbol constellations. We show that the amplitude noise is efficiently suppressed. The design is flexible and enables variation of the number of levels and their positioning. The scheme is compatible with phase regenerators. Also, compared to the traditional single-NOLM configuration scheme, new features, such as reduced and sign-varied power-dependent phase shift, are available. The model is simple to implement, as it requires only two couplers in addition to the traditional NOLM, and offers a vast range of optimization parameters. © 2014 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity - the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present direct real-time experimental measurements and numerical modeling of temporal and statistical properties for the Ytterbiumdoped fiber laser with spectral bandwidth of ∼2 GHz. The obtained results demonstrate nearly exponential probability density function for intensity fluctuations. A significant decrease below the Gaussian probability has been experimentally observed for intensity fluctuations having value more than 2.5 of average intensity that may be treated as indication of some mode correlations. © 2013 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have measured the longitudinal power distribution inside a random distributed feedback Raman fiber laser. The observed distribution has a sharp maximum whose position depends on pump power. The spatial distribution profiles are different for the first and the second Stokes waves. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate a great variability of single-pulse (with only one pulse/wave-packet traveling along the cavity) generation regimes in fiber lasers passively mode-locked by non-linear polarization evolution (NPE) effect. Combining extensive numerical modeling and experimental studies, we identify multiple very distinct lasing regimes with a rich variety of dynamic behavior and a remarkably broad spread of key parameters (by an order of magnitude and more) of the generated pulses. Such a broad range of variability of possible lasing regimes necessitates developing techniques for control/adjustment of such key pulse parameters as duration, radiation spectrum, and the shape of the auto-correlation function. From a practical view point, availability of pulses/wave-packets with such different characteristics from the same laser makes it imperative to develop variability-aware designs with control techniques and methods to select appropriate application-oriented regimes. © 2014 The Authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spectrum narrowing of CW light was observed experimentally in optical transmission fibers with normal dispersion. The effect's theoretical interpretation as an effective self-pumping parametric amplification of the spectrum's central part is confirmed by numerical modeling. OCIS codes: (060.4370) Nonlinear optics, fibers; (190.4410) Nonlinear optics, parametric processes; (190.4380); Nonlinear optics, four-wave mixing. © OSA 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have measured the longitudinal power distribution inside a random distributed feedback fiber laser. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 OSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different generation modes of all-positive-dispersion all-fibre Yb laser mode-locked due to effect of non-linear polarization evolution are investigated. For the first time we realized in the same laser both generation of single picoseconds pulse train and a newly observed lasing regime where generated are picosecond wave-packets, each being a train of femtosecond sub-pulses. Using both experimental results and numerical modeling we discuss in detail the mechanisms of laser mode-locking and switching of generation regimes and show a strong dependence of output laser characteristics on configuration of polarization controllers. A good qualitative agreement between experimental results and numerical modeling is demonstrated. © 2010 Copyright SPIE - The International Society for Optical Engineering.