39 resultados para 080109 Pattern Recognition and Data Mining
Resumo:
Harmonically related components are typically heard as a unified entity with a rich timbre and a pitch corresponding to the fundamental frequency. Mistuning a component generally has four consequences: (i) the global pitch of the complex shifts in the same direction as the mistuning; (ii) the component makes a reduced contribution to global pitch; (iii) the component is heard out as a separate sound with a pure timbre; (iv) its pitch differs from that of a pure tone of equal frequency in a small but systematic way. Local interactions between neighbouring components cannot explain these effects; instead they are usually explained in terms of the global operation of a single harmonic-template mechanism. However, several observations indicate that separate mechanisms govern the selection of spectral components for perceptual fusion and for the computation of global pitch. First, an increase in mistuning causes a harmonic to be heard out before it begins to be excluded from the computation of global pitch. Second, a single even harmonic added to an odd-harmonic complex is typically more salient than its odd neighbours. Third, the mistuning of a component in frequency-shifted stimuli, or stimuli with a moderate spectral stretch, results in changes in salience and component pitch like those seen for harmonic stimuli. Fourth, the global pitch of frequency-shifted stimuli is predicted well by the weighted fit of a harmonic template, but, with the exception of the lowest component, the fusion of individual partials for shifted stimuli is best predicted by the common pattern of spectral spacing. Fifth, our sensitivity to spectral pattern is surprisingly resistant to random variations in component spacing induced by applying mistunings to several harmonics at once. These findings are evaluated in the context of an autocorrelogram model of the proposed pitch/grouping dissociation. © S. Hirzel Verlag · EAA.
Resumo:
The primary aim of this study was to investigate facial emotion recognition (FER) in patients with somatoform disorders (SFD). Also of interest was the extent to which concurrent alexithymia contributed to any changes in emotion recognition accuracy. Twenty patients with SFD and 20 healthy, age, sex and education matched, controls were assessed with the Facially Expressed Emotion Labelling Test of FER and the 26-item Toronto Alexithymia Scale. Patients withSFD exhibited elevated alexithymia symptoms relative to healthy controls.Patients with SFD also recognized significantly fewer emotional expressions than did the healthy controls. However, the group difference in emotion recognition accuracy became nonsignificant once the influence of alexithymia was controlled for statistically. This suggests that the deficit in FER observed in the patients with SFD was most likely a consequence of concurrent alexithymia. It should be noted that neither depression nor anxiety was significantly related to emotion recognition accuracy, suggesting that these variables did not contribute the emotion recognition deficit. Impaired FER observed in the patients with SFD could plausibly have a negative influence on these individuals’ social functioning.
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems. © 2006 IEEE.
Resumo:
Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively. Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of the relation between summation and the slope of the psychometric function.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
Objectives: The aims were to determine if emotion recognition deficits observed in eating disorders generalise to non-clinical disordered eating and to establish if other psychopathological and personality factors contributed to, or accounted for, these deficits. Design: Females with high (n=23) and low (n=22) scores on the Eating Disorder Inventory (EDI) were assessed on their ability to recognise emotion from videotaped social interactions. Participants also completed a face memory task, a Stroop task, and self-report measures of alexithymia, depression and anxiety. Results: Relative to the low EDI group, high EDI participants exhibited a general deficit in recognition of emotion, which was related to their scores on the alexithymia measure and the bulimia subscale of the EDI. They also exhibited a specific deficit in the recognition of anger, which was related to their scores on the body dissatisfaction subscale of the EDI. Conclusions: In line with clinical eating disorders, non-clinical disordered eating is associated with emotion recognition deficits. However, the nature of these deficits appears to be dependent upon the type of eating psychopathology and the degree of co-morbid alexithymia.