296 resultados para OPTICAL-TRANSMISSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unrepeatered transmission over SMF-28 fibre is investigated using ultra-long Raman fibre laser based amplification. Experiments and simulations demonstrate 8 x 42.7Gb/s transmission up to 320km (67dB) span length using DPSK and ASK modulation with direct detection. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comparative analysis on three carrier phase extraction approaches, including a one-tap normalized least mean square method, a block-average method, and a Viterbi-Viterbi method, in coherent transmission system considering equalization enhanced phase noise. © OSA 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we have extended fibre grating devices in to mid-IR range. Fibre Bragg gratings (FBGs) and long-period gratings (LPGs) with spectral responses from near-IR (800nm) to mid-IR ( ∼ 2μm) have been demonstrated with transmission loss as strong as 10-20dB. 2μm FBG and LPG showed temperature and refractive index (RI) sensitivities of ∼ 91pm/°C and 357nm/RIU respectively. Finally, we have performed a bio sensing experiment by monitoring the degradation of foetal bovine serum at room temperature. The results encouragingly show that the mid-IR LPGs can be an ideal biosensor platform as they have high RI sensitivity and can be used to detect concentration change of bio-samples. © 2012 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peak-to-average power ratio (PAPR) and optical beat interference (OBI) effects are examined thoroughly in orthogonal frequency-division multiplexing access (OFDMA)-passive optical networks (PONs) at a signal bit rate up to ∼ 20 Gb/s per channel using cost-effective intensity-modulation and direct-detection (IM/DD). Single-channel OOFDM and upstream multichannel OFDM-PONs are investigated for up to six users. A number of techniques for mitigating the PAPR and OBI effects are presented and evaluated including adaptive-loading algorithms such as bit/power-loading, clipping for PAPR reduction, and thermal detuning (TD) for the OBI suppression. It is shown that the bit-loading algorithm is a very efficient PAPR reduction technique by reducing it at about 1.2 dB over 100 Km of transmission. It is also revealed that the optimum method for suppressing the OBI is the TD + bit-loading. For a targeted BER of 1 × 10-3, the minimum allowed channel spacing is 11 GHz when employing six users. © 2013 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate polarisation insensitive dual-band optical phase conjugation for multiple 400Gbit/s optical superchannels using a Raman amplified transmission link with a realistic span length of 75km. The resultant increase in transmission distance is confirmed analytically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed theoretical and numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification and chromatic dispersion (CD) compensation free single mode fiber (SMF) intensity-modulated and directdetection (IMDD) systems using two cascaded semiconductor optical amplifiers in a counterpropagating configuration as an intensity modulator (TC-SOA-CC-IM). A theoretical model describing the characteristics of this configuration is developed. Extensive performance comparisons are also made between the TC-SOA-CC and the single SOA intensity modulators. It is shown that, the TC-SOA-CC reaches its strongly saturated region using a lower input optical power much faster than the single SOA resulting in significantly reduced effective carrier lifetime and thus wide TC-SOA-CC bandwidths. It is shown that at low input optical power, we can increase the signal line rate almost 115% which will be more than twice the transmission performance offered by single SOA. In addition, the TCSOA-CC-IM is capable of supporting signal line rates higher than corresponding to the SOA-IM by using 10dB lower input optical powers. For long transmission distance, the TC-SOA-CC-IM has much stronger CD compensation capability compared to the SOA-IM. In addition the use of TC-SOA-CC-IM is more effective regarding the capability to benefit from the CD compensation for shorter distances starting at 60km SMF, whilst for the SOA-IM starting at 90km. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally demonstrate an effective multiplier-free blind phase noise estimation technique for CO-OFDM systems for the first time based on the statistical properties of the received symbols' phases. Our technique operates in polar coordinates, providing very low implementation complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this talk we will review some of the key enabling technologies of optical communications and potential future bottlenecks. Single mode fibre (SMF) has long been the preferred waveguide for long distance communication. This is largely due to low loss, low cost and relative linearity over a wide bandwidth. As capacity demands have grown SMF has largely been able to keep pace with demand. Several groups have been identifying the possibility of exhausting the bandwidth provided by SMF [1,2,3]. This so called “capacity-crunch” has potentially vast economic and social consequences and will be discussed in detail. As demand grows optical power launched into the fibre has the potential to cause nonlinearities that can be detrimental to transmission. There has been considerable work done on identifying this nonlinear limit [4, 5] with a strong re- search interest currently on the topic of nonlinear compensation [6, 7]. Embracing and compensating for nonlinear transmission is one potential solution that may extend the lifetime of the current waveguide technology. However, at sufficiently high powers the waveguide will fail due to heat-induced mechanical failure. Moving forward it be- comes necessary to address the waveguide itself with several promising contenders discussed, including few-mode fibre and multi-core fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large broadening of short optical pulses due to fiber dispersion leads to a strong overlap in information data streams resulting in statistical deviations of the local power from its average. We present a theoretical analysis of rare events of high-intensity fluctuations-optical freak waves-that occur in fiber communication links using bit-overlapping transmission. Although the nature of the large fluctuations examined here is completely linear, as compared to commonly studied freak waves generated by nonlinear effects, the considered deviations inherit from rogue waves the key features of practical interest-random appearance of localized high-intensity pulses. We use the term "rogue wave" in an unusual context mostly to attract attention to both the possibility of purely linear statistical generation of huge amplitude waves and to the fact that in optics the occurrence of such pulses might be observable even with the standard Gaussian or even rarer-than-Gaussian statistics, without imposing the condition of an increased probability of extreme value events. © 2011 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urinary bladder diseases are a common problem throughout the world and often difficult to accurately diagnose. Furthermore, they pose a heavy financial burden on health services. Urinary bladder tissue from male pigs was spectrophotometrically measured and the resulting data used to calculate the absorption, transmission, and reflectance parameters, along with the derived coefficients of scattering and absorption. These were employed to create a "generic" computational bladder model based on optical properties, simulating the propagation of photons through the tissue at different wavelengths. Using the Monte-Carlo method and fluorescence spectra of UV and blue excited wavelength, diagnostically important biomarkers were modeled. Additionally, the multifunctional noninvasive diagnostics system "LAKK-M" was used to gather fluorescence data to further provide essential comparisons. The ultimate goal of the study was to successfully simulate the effects of varying excited radiation wavelengths on bladder tissue to determine the effectiveness of photonics diagnostic devices. With increased accuracy, this model could be used to reliably aid in differentiating healthy and pathological tissues within the bladder and potentially other hollow organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss recent progress on the use of optical and digital phase conjugation techniques for nonlinearity compensation in optical fiber links. We compare the achievable performance gain of phase conjugated twin wave applied in two polarization states and time segments with mid-link optical phase conjugation and digital back propagation. For multicarrier transmission scheme such as orthogonal frequency division multiplexing, two recently proposed schemes, namely phase-conjugated pilots and phase-conjugated subcarrier coding are reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that a distributed Raman amplification scheme based on random distributed feedback (DFB) fiber laser enables bidirectional second-order Raman pumping without increasing relative intensity noise (RIN) of the signal. This extends the reach of 10 × 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with conventional Raman amplification schemes. Moreover, this scheme gives the longest maximum transmission distance among all the Raman amplification schemes presented in this paper, whilst maintaining relatively uniform and symmetric signal power distribution, and is also adjustable in order to be highly compatible with different nonlinearity compensation techniques, including mid-link optical phase conjugation (OPC) and nonlinear Fourier transform (NFT).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear Fourier transform, also known as eigenvalue communications, is a transmission and signal processing technique that makes positive use of the nonlinear properties of fibre channels. I will discuss recent progress in this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a theoretical study of polarization impairments in periodically spun fiber Raman amplifiers. Based on the Stochastic Generator approach we have derived equations for polarization dependent gain and mean-square gain fluctuations. We show that periodically spun fiber can work as a Raman polarizer but it suffers from increased polarization dependent gain and gain fluctuations. Unlike this, application of a depolarizer can result in suppression of polarization dependent gain and gain fluctuations. We demonstrate that it is possible to design a new fiber Raman polarizer by combining a short fiber without spin and properly chosen parameters and a long periodically spun fiber. This polarizer provides almost the same polarization pulling for all input signal states of polarization and so have very small polarization dependent gain. The obtained results can be used in high-speed fiber optic communication for design of quasi-isotropic spatially and spectrally transparent media with increased Raman gain. © 2011 IEEE.