484 resultados para optical fiber sensors


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tunable Raman fiber lasers have attracted great interest owing to their high efficiency and reliability important for applications, such as optical fiber communications and sensing, spectroscopy, and instrument testing. Their tuning range is defined by the Raman gain bandwidth amounting to about 40 nm in telecom spectral range (∼1550 nm) for conventional silica single mode fibers (SMF). To increase the range, highly nonlinear fibers which broaden pump spectrum may be incorporated in the cavity of Raman fiber lasers, see e.g. [1]. Another approach is to involve Rayleigh scattering forming random distributed feedback in a relatively long fiber resulting in prominent flattening of the tuning curve [2]. In this paper we report on combination of these two techniques in tunable Raman fiber lasers thus providing great improvement of their output characteristics. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a novel random DFB fiber laser based Raman amplification using bidirectional second-order pumping. This extends the reach of 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with other Raman amplification techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider an optical fiber with a nanoscale variation of the effective fiber radius that supports whispering gallery modes slowly propagating along the fiber, and reveal that the radius variation can be designed to support the reflectionless propagation of these modes. We show that reflectionless modulations can realize control of the transmission amplitude and temporal delay, while enabling close packing due to the absence of cross talk, in contrast to the conventional potentials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high performance liquid-level sensor based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported in detail. The sensor sensitivity is found to be 98pm/cm of liquid, enhanced by more than a factor of 9 compared to a reported silica fiber-based sensor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this talk we investigate the usage of spectrally shaped amplified spontaneous emission (ASE) in order to emulate highly dispersed wavelength division multiplexed (WDM) signals in an optical transmission system. Such a technique offers various simplifications to large scale WDM experiments. Not only does it offer a reduction in transmitter complexity, removing the need for multiple source lasers, it potentially reduces the test and measurement complexity by requiring only the centre channel of a WDM system to be measured in order to estimate WDM worst case performance. The use of ASE as a test and measurement tool is well established in optical communication systems and several measurement techniques will be discussed [1, 2]. One of the most prevalent uses of ASE is in the measurement of receiver sensitivity where ASE is introduced in order to degrade the optical signal to noise ratio (OSNR) and measure the resulting bit error rate (BER) at the receiver. From an analytical point of view noise has been used to emulate system performance, the Gaussian Noise model is used as an estimate of highly dispersed signals and has had consider- able interest [3]. The work to be presented here extends the use of ASE by using it as a metric to emulate highly dispersed WDM signals and in the process reduce WDM transmitter complexity and receiver measurement time in a lab environment. Results thus far have indicated [2] that such a transmitter configuration is consistent with an AWGN model for transmission, with modulation format complexity and nonlinearities playing a key role in estimating the performance of systems utilising the ASE channel emulation technique. We conclude this work by investigating techniques capable of characterising the nonlinear and damage limits of optical fibres and the resultant information capacity limits. REFERENCES McCarthy, M. E., N. Mac Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats," 2014 European Conference on IEEE Optical Communication (ECOC), 2014. 2. Ellis, A., N. Mac Suibhne, F. Gunning, and S. Sygletos, “Expressions for the nonlinear trans- mission performance of multi-mode optical fiber," Opt. Express, Vol. 21, 22834{22846, 2013. Vacondio, F., O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems," Opt. Express, Vol. 20, 1022-1032, 2012.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We feel that the main claim made in the abstract of the preceding Comment is wrong. Using results obtained in our paper, we prove that rogue waves with amplitudes much larger than the average level can be observed during a short period of time in purely linear propagation regimes in optical fiber systems. © 2011 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ∼22-km-long optical fiber. Twenty-two lasing lines with spacing of ∼100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power. © 2011 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating (FBG) reflectors and distributed feedback via Rayleigh scattering in a ∼22 km long optical fiber. Twenty two lasing lines with spacing of ∼100 GHz (close to ITU grid) in C-band are generated at Watts power level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution which is almost independent on power. The current set up showing the capability of generating Raman gain of about 100-nm wide giving the possibility of multiwavelength generation at different bands. © 2011 SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Random fiber lasers blend together attractive features of traditional random lasers, such as low cost and simplicity of fabrication, with high-performance characteristics of conventional fiber lasers, such as good directionality and high efficiency. Low coherence of random lasers is important for speckle-free imaging applications. The random fiber laser with distributed feedback proposed in 2010 led to a quickly developing class of light sources that utilize inherent optical fiber disorder in the form of the Rayleigh scattering and distributed Raman gain. The random fiber laser is an interesting and practically important example of a photonic device based on exploitation of optical medium disorder. We provide an overview of recent advances in this field, including high-power and high-efficiency generation, spectral and statistical properties of random fiber lasers, nonlinear kinetic theory of such systems, and emerging applications in telecommunications and distributed sensing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I will overview our recent results on ultra-long lasers and will discuss the concept of a fiber laser with an open cavity that operates using random distributed feedback provided by Rayleigh scattering amplified through the Raman effect. © 2011 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrated an Erbium-doped picosecond fiber laser mode locked by carbon nanotube in N-methyl-2-pryrrolidone solvent in an in-fiber micro-channel. © 2011 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have implemented a dynamic strain sensor using a Polymer Optical Fiber Bragg Grating (POFBG). In this paper, we have investigated an approach for making such systems cheaper through the use of easy to handle multimode fiber. A Vertical-Cavity Surface-Emitting Laser is used to decrease the cost of the interrogation system and a photodetector converts the reflected light into an electrical signal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.