271 resultados para Crotolaria juncea fiber
Resumo:
Long period gratings (LPGs) were written into a progressive three-layered (PTL) monomode optical fiber. The spectral sensitivity was experimentally measured with respect to temperature and the surrounding refractive index, and compared with theoretical predictions. The behavior of the devices suggests that this type of fiber may be useful as a means of reducing the sensitivity of LPGs to the surrounding medium and for simultaneous temperature and refractive index sensing.
Resumo:
This paper compares the environmental sensing behaviour of long period gratings written in three fibers with different refractive index profiles: step, W and a progressive three layered fiber. The measurands considered are temperature, refractive index, axial strain and bending, and the spectral behaviour of individual attenuation bands were observed and, where possible, compared to theoretical predictions. Significant differences in the behaviour of the three fiber types were found. © 2003 Elsevier Inc. All rights reserved.
Resumo:
A novel implementation of an optical chemsensor device is reported based on long-period fiber grating structures ultraviolet-inscribed in D-fiber, with sensitivity enhancement by cladding etching. The results of a comparative study using D-fiber devices and similar structures in standard optical fiber reveal that the D-fiber devices offer substantially greater sensitivity both with and without etching. Based on a calibrated response to changes in refractive index, the grating devices have been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.2%.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendedable to 70 nm.
Resumo:
A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams. © 2004 IEEE.
Resumo:
The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.
Resumo:
A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices. © 2005 The American Physical Society.
Resumo:
We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.
Resumo:
We present a simple optical chemsensor device based on tilted Bragg grating structures ultraviolet-inscribed in conventional multimode fiber and sensitized by a hydrofluoric (HF)-etching treatment. The transition behaviors of fiber Bragg gratings (FBGs) from normal to tilted structures and their spectral evolution under HF-etching have been studied. The etched devices have been used to measure the concentrations of sugar solution, showing a potential capability of detecting concentration changes as small as 0.5%, which is an order of magnitude lower than that of previously reported FBG sensors in single-mode fiber.
Resumo:
We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations. © 2005 Springer Science+Business Media, Inc.
Resumo:
We report a strong polarization dependent coupling behavior of fiber Bragg gratings with excessively tilted structures up to 81°. This unique property has been utilized to implement a novel twist sensor, showing high torsion sensitivity. The twist induced light coupling interchange between the two birefringence modes makes it possible to interrogate such a sensor using low-cost intensity demodulation technique. © 2006 IEEE.
Resumo:
We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%. © 2007 Optical Society of America.
Resumo:
Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.
Resumo:
We have UV-inscribed and theoretically and experimentally analyzed fiber gratings with the structure tilted at 45° and implemented this type of devices as an in-fiber polarizer. A systematic investigation has been carried out on the characterization of 45° tilted fiber gratings (45° TFGs) in terms of the polarization-dependant loss (PDL) and thermal response. The detailed theoretical modeling has revealed a linear correlation between the grating length and the PDL, which has been proved by the experimental results. For the first time, we have examined the UV beam diffraction from a tilted phase mask and designed the UV-inscription system to suit the 45° TFG fabrication. Experimentally, a 24 mm long 45° TFG UV-inscribed in standard telecom single-mode fiber exhibited around 25 dB PDL at 1530 nm and an over ~300 nm bandwidth of PDL spectrum. By the concatenation method, a 44 mm long grating showed a PDL as high as 40 dB that is close to the high polarization extinction ratio of commercial products. Moreover, we have revealed that the PDL of 45° TFGs has low thermal influence, which is desirable for real application devices. Finally, we experimentally demonstrated an all-fiber twist sensor system based on a 45° and an 81° TFG.
Resumo:
We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.