252 resultados para erbium-doped fiber laser (EDFL)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We highlight two important aspects related to a mathematical modeling of pulsed fiber lasers with long and ultra-long ring cavity -impact of an initial noise and a cavity length on generation of single optical pulses. Using as an example a simple scalar model of a ring fiber laser that describes the radiation build-up from noise and the following intra-cavity pulse dynamics during a round trip we study dependence of generated pulse characteristics on the resonator length in the range from 30 m up to 2 km. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characteristics of fiber Bragg grating based Fabry-Perot (FBG-FP) structures under transversal loading are investigated. A novel switchable multi-wavelength fiber laser employing loaded FBG-FP is also demonstrated. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical pump controlled, remotely tunable phase-shifted fiber grating transmission filters were analyzed. The transmission peak had a full width hail maximum (FWHM) bandwidth. With increasing control pump power, the resonant peak shifted towards the longer wavelength side. The efficiency of the system was largely affected by the greater number of sections of doped fiber as well as the absence of recirculation of unabsorbed pump beam. The configuration, besides its simplicity and cost-effectiveness, exhibited wavelength-independent pump-induced phase shifts and no anisotropic effects during operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically show the possibility of pulse shaping in a mode-locked fiber laser by inclusion of an amplitude-phase spectral filter into the laser cavity. Various advanced temporal waveforms are generated, including parabolic, flat-top and triangular pulses. © 2014 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a detailed numerical analysis, fabrication method and experimental investigation on 45º tilted fiber gratings (45º-TFGs) and excessively tilted fiber gratings (Ex-TFGs), and their applications in fiber laser and sensing systems. The one of the most significant contributions of the work reported in this thesis is that the 45º-TFGs with high polarization extinction ratio (PER) have been fabricated in single mode telecom and polarization maintaining (PM) fibers with spectral response covering three prominent optic communication and central wavelength ranges at 1060nm, 1310nm and 1550nm. The most achieved PERs for the 45º-TFGs are up to and greater than 35-50dB, which have reached and even exceeded many commercial in-fiber polarizers. It has been proposed that the 45º-TFGs of high PER can be used as ideal in-fiber polarizers for a wide range of fiber systems and applications. In addition, in-depth detailed theoretical models and analysis have been developed and systematic experimental evaluation has been conducted producing results in excellent agreement with theoretical modeling. Another important outcome of the research work is the proposal and demonstration of all fiber Lyot filters (AFLFs) implemented by utilizing two (for a single stage type) and more (for multi-stage) 45º-TFGs in PM fiber cavity structure. The detailed theoretical analysis and modelling of such AFLFs have also been carried out giving design guidance for the practical implementation. The unique function advantages of 45º-TFG based AFLFs have been revealed, showing high finesse multi-wavelength transmission of single polarization and wide range of tuneability. The temperature tuning results of AFLFs have shown that the AFLFs have 60 times higher thermal sensitivity than the normal FBGs, thus permitting thermal tuning rate of ~8nm/10ºC. By using an intra-cavity AFLF, an all fiber soliton mode locking laser with almost total suppression of siliton sidebands, single polarization output and single/multi-wavelength switchable operation has been demonstrated. The final significant contribution is the theoretical analysis and experimental verification on the design, fabrication and sensing application of Ex-TFGs. The Ex-TFG sensitivity model to the surrounding medium refractive index (SRI) has been developed for the first time, and the factors that affect the thermal and SRI sensitivity in relation to the wavelength range, tilt angle, and the size of cladding have been investigated. As a practical SRI sensor, an 81º-TFG UV-inscribed in the fiber with small (40μm) cladding radius has shown an SRI sensitivity up to 1180nm/RIU in the index of 1.345 range. Finally, to ensure single polarization detection in such an SRI sensor, a hybrid configuration by UV-inscribing a 45º-TFG and an 81º-TFG closely on the same piece of fiber has been demonstrated as a more advanced SRI sensing system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinearity plays a critical role in the intra-cavity dynamics of high-pulse energy fiber lasers. Management of the intra-cavity nonlinear dynamics is the key to increase the output pulse energy in such laser systems. Here, we examine the impact of the order of the intra-cavity elements on the energy of generated pulses in the all-normal dispersion mode-locked ring fiber laser cavity. In mathematical terms, the nonlinear light dynamics in resonator makes operators corresponding to the action of laser elements (active and passive fiber, out-coupler, saturable absorber) non-commuting and the order of their appearance in a cavity important. For the simple design of all-normal dispersion ring fiber laser with varying cavity length, we found the order of the cavity elements, leading to maximum output pulse energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As shown recently, a long telecommunication fibre may be treated as a natural one-dimensional random system, where lasing is possible due to a combination of random distributed feedback via Rayleigh scattering by natural refractive index inhomogeneities and distributed amplification through the Raman effect. Here we present a new type of a random fibre laser with a narrow (∼1 nm) spectrum tunable over a broad wavelength range (1535-1570 nm) with a uniquely flat (∼0.1 dB) and high (>2 W) output power and prominent (>40 %) differential efficiency, which outperforms traditional fibre lasers of the same category, e.g. a conventional Raman laser with a linear cavity formed in the same fibre by adding point reflectors. Analytical model is proposed that explains quantitatively the higher efficiency and the flatter tuning curve of the random fiber laser compared to conventional one. The other important features of the random fibre laser like "modeless" spectrum of specific shape and corresponding intensity fluctuations as well as the techniques of controlling its output characteristics are discussed. Outstanding characteristics defined by new underlying physics and the simplicity of the scheme implemented in standard telecom fibre make the demonstrated tunable random fibre laser a very attractive light source both for fundamental science and practical applications such as optical communication, sensing and secure transmission. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple technique for direct real-time assessment of a fiber laser cavity-mode condition during operation is demonstrated. Mode stabilization and optimization with this cavity-mode monitoring and conditioning feedback scheme shows significant improvements to the output performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental results on a 50km fiber laser switching among four different values of the free-spectral range for possible applications in secure key-distribution. © 2014 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration. © 2012 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanomaterials are an active frontier of research in current nanotechnology. Single wall Carbon Nanotube (SWNT) is a unique material which has already found several applications in photonics, electronics, sensors and drug delivery. This thesis presents a summary of the author’s research on functionalisation of SWNTs, a study of their optical properties, and potential for an application in laser physics. The first significant result is a breakthrough in controlling the size of SWNT bundles by varying the salt concentrations in N-methyl 2-pyrrolidone (NMP) through a salting out effect. The addition of Sodium iodide leads to self-assembly of CNTs into recognizable bundles. Furthermore, a stable dispersion can be made via addition polyvinylpyrrolidone (PVP) polymer to SWNTs-NMP dispersion, which indicates a promising direction for SWNT bundle engineering in organic solvents. The second set of experiments are concerned with enhancement of photoluminescence (PL), through the formation of novel macromolecular complexes of SWNTs with polymethine dyes with emission from enhanced nanotubes in the range of dye excitation. The effect appears to originate from exciton energy transfer within the solution. Thirdly, SWNT base-saturable absorbers (SA) were developed and applied to mode locking of fibre lasers. SWNT-based SAs were applied in both composite and liquid dispersion forms and achieved stable ultrashort generation at 1000nm, 1550nm, and 1800 nm for Ytterbium, Erbium and Thulium-doped fibre laser respectively. The work presented here demonstrates several innovative approaches for development of rapid functionalised SWNT-based dispersions and composites with potential for application in various photonic devices at low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying high-speed polarimetery we experimentally demonstrate new types of vector solitons for multipulse operation in an erbium doped carbon nanotube mode-locked laser. The observed states of polarisation reveal either fast pulse-to-pulse polarisation switching between crosspolarised modes or slow cyclic evolution.