418 resultados para Mironenko, Sergei
Resumo:
A novel all-optical regeneration technique using loop-mirror intensity-filtering and nonlinear broadening in normal-dispersion fibre is described. The device offers 2R-regeneration function and phase margin improvement. The technique is applied to 40Gbit/s return-to-zero optical data streams.
Resumo:
We analyse a 2R regenerator using nonlinear-optical-loop-mirror and a 3R regenerator employing nonlinearly-enhanced amplitude modulator in 40Gbit/s WDM networks based on standard fibre (SMF). Characterization of one- (600km of SMF) and two-step regeneration is presented.
Efficiency of energy deposition by fundamental and second harmonics in femtosecond laser inscription
Resumo:
We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy
Resumo:
The feasibility of stable soliton transmission system was demonstrated using a practical dispersion map in conjunction with in-line nonlinear optical loop mirrors (NOLMs). The system's performance was examined at 40 Gbit/s data rate in terms of maximum propagation distance corresponding to a bit error rate of more than 10-9. The bit error rate was estimated by means of the standard Q-factor.
Resumo:
We examine the feasibility of optical pulse transmission in dispersion-managed fiber systems with in-line nonlinear optical loop mirrors. Applying numerical analysis, we find regimes of stable propagation over long distances in such lines, with a significant increase in the signal-to-noise ratio. © 2000 Optical Society of America.
Resumo:
We study soliton solutions of the path-averaged propagation equation governing the transmission of dispersion-managed (DM) optical pulses in the (practical) limit when residual dispersion and nonlinearity only slightly affect the pulse dynamics over one compensation period. In the case of small dispersion map strengths, the averaged pulse dynamics is governed by a perturbed form of the nonlinear Schrödinger equation; applying a perturbation theory – elsewhere developed – based on inverse scattering theory, we derive an analytic expression for the envelope of the DM soliton. This expression correctly predicts the power enhancement arising from the dispersion management. Theoretical results are verified by direct numerical simulations.
Resumo:
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Resumo:
A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams. © 2004 IEEE.
Resumo:
A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices. © 2005 The American Physical Society.