178 resultados para lasers and laser optics
Resumo:
Narrow-band emission of spectral width down to ∼0.05 nm linewidth is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ∼10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. © 2013 Optical Society of America.
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequencydoubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable allroom-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasiLittrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadlytunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.
Resumo:
In the present paper we experimentally demonstrate a generation in a short Raman fiber laser having 10 000 different longitudinal modes only. We design the laser using 12 meters of commercially available fiber. Contrary to the recently demonstrated single longitudinal mode DFB Raman laser and short DBR Raman laser, in the laser under study the number of modes is high enough for efficient nonlinear interactions. Experimentally measured time dynamics reveals the presence of mode correlations in the radiation: the measured extreme events lasts for more than 10 round-trips.
Resumo:
In the present paper we numerically study instrumental impact on statistical properties of quasi-CW Raman fiber laser using a simple model of multimode laser radiation. Effects, that have the most influence, are limited electrical bandwidth of measurement equipment and noise. To check this influence, we developed a simple model of the multimode quasi- CW generation with exponential statistics (i.e. uncorrelated modes). We found that the area near zero intensity in probability density function (PDF) is strongly affected by both factors, for example both lead to formation of a negative wing of intensity distribution. But far wing slope of PDF is not affected by noise and, for moderate mismatch between optical and electrical bandwidth, is only slightly affected by bandwidth limitation. The generation spectrum often becomes broader at higher power in experiments, so the spectral/electrical bandwidth mismatch factor increases over the power that can lead to artificial dependence of the PDF slope over the power. It was also found that both effects influence the ACF background level: noise impact decreases it, while limited bandwidth leads to its increase. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
We have measured the longitudinal power distribution inside a random distributed feedback Raman fiber laser. The observed distribution has a sharp maximum whose position depends on pump power. The spatial distribution profiles are different for the first and the second Stokes waves. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 Optical Society of America.
Resumo:
Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. Full text Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improvement of III-nitride LED performance [1]. External quantum efficiency ηe (EQE) provides integral information on the recombination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE ηi and LEE ηext at negligible carrier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correlation between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, providing an express tool for separate evaluation of IQE and LEE. We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE versus output power P and finding the power Pm corresponding to EQE maximum ηm enables comparing the measurements with the analytical relationships ηi = Q/(Q+p1/2+p-1/2) ,p = P/Pm , and Q = B/(AC) 1/2 where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio ηm/ηe plotted as a function of p1/2 +p1-1/2 (see Fig.la) and then LEE calculated as ηext = ηm (Q+2)/Q . Experimental EQE as a function of normalized optical power p is shown in Fig. 1 b along with the analytical approximation based on the ABCmodel. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. [I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. [2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure lasers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. [3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. [4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. © 2014 IEEE.
Resumo:
We study the radiation build-up in laminar and turbulent generation regimes in quasi-CW Raman fiber laser. We found the resulted spectral shape and generation type is defined by the total spectral broadening/narrowing balance over laser cavity round-trip, which is substantially different in different regimes starting from first round-trips of the radiation build-up. In turbulent regime, the steady-state is reached only after a few round-trips, while in the laminar regime the laser approaches the equilibrium spectrum shape asymptotically.
Resumo:
For the first time, we demonstrate the possibility to switch between three distinct pulse regimes in a dissipative dispersion-managed (DM) fibre laser by solely controlling the gain saturation energy. Nonlinear Schrödinger equation based simulations show the transitions between hyper-Gaussian similaritons, parabolic similaritons, and dissipative solitons in the same laser cavity. It is also shown that such transitions exist in a wide dispersion range from all-normal to slightly net-normal dispersion. This work demonstrates that besides dispersion and filter managements gain saturation energy can be a new degree of freedom to manage pulse regimes in DM fibre lasers, which offers flexibility in designing ultrafast fibre lasers. Also, the result indicates that in contrast to conservative soliton lasers whose intensity profiles are unique, dissipative DM lasers show diversity in pulse shapes. The findings not only give a better understanding of pulse shaping mechanisms in mode-locked lasers, but also provide insight into dissipative systems.
Resumo:
Researchers conducted investigations to demonstrate the advantages of random distributed feedback fiber laser. Random lasers had advantages, such as simple technology that did not require a precise microcavity and low production cost. The properties of their output radiation were special in comparison to those of conventional lasers and they were characterized by complex features in the spatial, spectral, and time domains. The researchers demonstrated a new type of one-dimensional laser with random distributed feedback based on Rayleigh scattering (RS) that was presented in any transparent glass medium due to natural inhomogeneities of refractive index. The cylindrical fiber waveguide geometry provided transverse confinement, while the cavity was open in the longitudinal direction and did not include any regular point-action reflectors.
Resumo:
We demonstrate an ultra-compact, room-Temperature, continuous-wave, broadly-Tunable dual-wavelength InAs/GaAs quantum-dot external-cavity diode laser in the spectral region between 1150 nm and 1301 nm with maximum output power of 280 mW. This laser source generating two modes with tunable difference-frequency (300 GHz-30 THz) has a great potential to replace commonly used bulky lasers for THz generation in photomixer devices.