252 resultados para erbium-doped fiber laser
Resumo:
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
Resumo:
We present recent results on measurements of intensity spatio-temporal dynamics in passively mode-locked fibre laser. We experimentally uncover distinct, dynamic and stable spatio-temporal generation regimes of various stochasticity and periodicity properties in though-to-be unstable laser. We present a method to distinguish various types of generated coherent structures, including rogue and shock waves, within the radiation by means of introducing of intensity ACF evolution map. We also discuss how the spectral dynamics could be measured in fiber lasers generating irregular train of pulses of quasi-CW generation via combination of heterodyning and intensity spatio-temporal measurement concept.
Resumo:
A pulse–pulse interaction that leads to rogue wave (RW) generation in lasers was previously attributed either to soliton–soliton or soliton–dispersive-wave interaction. The beating between polarization modes in the absence of a saturable absorber causes similar effects. Accounting for these polarization modes in a laser resonator is the purpose of the distributed vector model of laser resonators. Furthermore, high pump power, high amplitude, and short pulse duration are not necessary conditions to observe pulse attraction, repulsion, and collisions and the resonance exchange of energy between among them. The regimes of interest can be tuned just by changing the birefringence in the cavity with the pump power slightly higher than the laser threshold. This allows the observation of a wide range of RW patterns in the same experiment, as well as to classify them. The dynamics of the interaction between pulses leads us to the conclusion that all of these effects occur due to nonlinearity induced by the inverse population in the active fiber as well as an intrinsic nonlinearity in the passive part of the cavity. Most of the mechanisms of pulse–pulse interaction were found to be mutually exclusive. This means that all the observed RW patterns, namely, the “lonely,” “twins,” “three sisters,” and “cross,” are probably different cases of the same process.
Resumo:
A fiber mode-lock laser allows generation of the optical rogue wave (ORW) at different time scales. The criteria for distinguishing between them is a comparison of the event lifetime with the main characteristic time of the system. The characteristic time can be estimated from the decay of an autocorrelation function (AF). Thus, in comparison with AF characteristic time, fast optical rogue wave (FORW) events have duration less than the AF decay time and it appeared due to pulse-pulse interaction and nonlinear pulses dynamics. While slow optical rogue wave (SORW) have a duration much more longer than the decay time of the AF which it papered due to hopping between different attractors. Switching between regimes can be managed by change the artificial birefringence that induced in a laser cavity. For understanding the role playing by the periodical amplification and the resonator, we have performed an unidirectional fiber laser experiments without a saturable absorber. This laser experiment allowed to generate of most of the RW patterns which were either observed experimentally or predicted theoretically. In this way, we have observed the generation of an FORW along with SORW under similar conditions. Most of the patterns were found to be mutually exclusive which means that only one RW mechanism was realized in each regime of generation.
Resumo:
We report the generation of a 13dB 2nd order Bragg resonance in a conventionally UV inscribed 45° tilted fiber grating, showing strong polarization dependency and its application for singe polarization output of a fiber laser. © 2010 Optical Society of America.
Resumo:
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.
Resumo:
In the presented paper, the temporal and statistical properties of a Lyot filter based multiwavelength random DFB fiber laser with a wide flat spectrum, consisting of individual lines, were investigated. It was shown that separate spectral lines forming the laser spectrum have mostly Gaussian statistics and so represent stochastic radiation, but at the same time the entire radiation is not fully stochastic. A simple model, taking into account phenomenological correlations of the lines' initial phases was established. Radiation structure in the experiment and simulation proved to be different, demanding interactions between different lines to be described via a NLSE-based model.
Resumo:
The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.
Resumo:
In this thesis, I present the studies on fabrication, spectral and polarisation characterisation of fibre gratings with tilted structures at 45º and > 45º (namely 45º- TFGs and ex 45º-TFGs throughout this thesis) and a range of novel applications with these two types of grating. One of the major contributions made in this thesis is the systematic investigation of the grating structures, inscription analysis and spectral and polarisation properties of both types of TFGs. I have inscribed 45º-TFGs in standard telecom and polarisation maintaining (PM) fibres. Two wavelength regions of interest have been explored including 1.55 µm and 1.06 µm. Detailed analysis on fabrication and characterisation of 45º-TFGs on PM fibres have also been carried out for the first time. For ex 45º- TFGs, fabrication has been investigated only on low-cost standard telecom fibre. Furthermore, thermal responses have been measured and analysed showing that both types of TFG have low responsivity to temperature change. More importantly, their refractive index (RI) responses have been characterised to verify the high responsivity to surrounding medium. Based on the unique polarisation properties, both types of TFG have been applied in fibre laser systems to improve the laser performance, which forms another major contribution of the research presented in this thesis. The integration of a 45º-TFG to the Erbium doped fibre laser (EDFL) enables single polarisation laser output at a single wavelength. When combing with ex 45º-TFGs, the EDFL can be transformed to a multi-wavelength switchable laser with single polarisation output. Furthermore, by utilising the polarisation property of the TFGs, a 45º-TFG based mode locked fibre laser is implemented. This laser can produce laser pulses at femtosecond scale and is the first application of TFG in the field of nonlinear optics. Another important contribution from the studies is the development of TFG based passive and active optical sensor systems. An ex 45º-TFG has been successfully developed into a liquid level sensor showing high sensitivity to water based solvents. Strain and twist sensors have been demonstrated via a fibre laser system using both 45°- and ex 45º-TFG with capability identifying not just the twist rate but also the direction. The sensor systems have shown the added advantage of low cost signal demodulation. In addition, load sensor applications have been demonstrated using the 45º-TFG based single polarisation EDFL and the experimental results show good agreement with the theoretical simulation.
Resumo:
Mode-locked lasers emitting a train of femtosecond pulses called dissipative solitons are an enabling technology for metrology, high-resolution spectroscopy, fibre optic communications, nano-optics and many other fields of science and applications. Recently, the vector nature of dissipative solitons has been exploited to demonstrate mode locked lasing with both locked and rapidly evolving states of polarisation. Here, for an erbium-doped fibre laser mode locked with carbon nanotubes, we demonstrate the first experimental and theoretical evidence of a new class of slowly evolving vector solitons characterized by a double-scroll chaotic polarisation attractor substantially different from Lorenz, Rössler and Ikeda strange attractors. The underlying physics comprises a long time scale coherent coupling of two polarisation modes. The observed phenomena, apart from the fundamental interest, provide a base for advances in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetisation in data storage devices and many other areas. © 2014 CIOMP. All rights reserved.
Resumo:
The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation.
Resumo:
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.
Resumo:
We overview our recent results on polarisation dynamics of vector solitons in erbium doped fibre laser mode locked with carbon nanotubes. Our experimental and theoretical study revealed new families of vector solitons for fundamental and bound-state soliton operations. The observed scenario of the evolution of the states of polarisation (SOPs) on the Poincare sphere includes fast polarisation switching between two and three SOPs along with slow SOP evolution on a double scroll chaotic attractor. The underlying physics presents an interplay between effects of birefringence of the laser cavity and light induced anisotropy caused by polarisation hole burning. © 2014 IEEE.
Resumo:
At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral intensity profile, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this talk, we review our recent progress on the realisation of different regimes of pulse generation in passively mode-locked fibre lasers through control of the in-cavity propagation dynamics. We report on the possibility to achieve both parabolic self-similar and triangular pulse shaping in a mode-locked fibre laser via adjustment of the net normal dispersion and integrated gain of the cavity [1]. We also show that careful control of the gain/loss parameters of a net-normal dispersion laser cavity provides the means of achieving switching among Gaussian pulse, dissipative soliton and similariton pulse solutions in the cavity [2,3]. Furthermore, we report on our recent theoretical and experimental studies of pulse shaping by inclusion of an amplitude and phase spectral filter into the cavity of a laser. We numerically demonstrate that a mode-locked fibre laser can operate in dif- ferent pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [4]. An application of technique using a flat-top spectral filter is demonstrated to achieve the direct generation of sinc-shaped optical Nyquist pulses of high quality and of a widely tuneable bandwidth from the laser [5]. We also report on a recently-developed versa- tile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soli- ton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [6]. References: 1. S. Boscolo and S. K. Turitsyn, Phys. Rev. A 85, 043811 (2012). 2. J. Peng et al., Phys. Rev. A 86, 033808 (2012). 3. J. Peng, Opt. Express 24, 3046-3054 (2016). 4. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438-441 (2014). 5. S. Boscolo, C. Finot, and S. K. Turitsyn, IEEE Photon. J. 7, 7802008 (2015). 6. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
Resumo:
We demonstrate an all-fibre erbium doped fibre laser mode-locked by using an intracavity 45°-Tilted Fibre Grating as a polarization element. The laser produces soliton-like pulses with ~600fs pulse duration and ~1nJ output energy at a repetition rate of 10.34MHz. © 2010 Optical Society of America.