558 resultados para Optical fiber sensing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/µstrain, and the temperature sensitivity was -60 pm/°C. This is the first 870nm FBG and the first demonstration of a negative temperature response for the TOPAS FBG, for which earlier results have indicated a positive temperature response. The relatively low material loss of the fiber at this wavelength compared to that at longer wavelengths will considerably enhance the potential utility of the TOPAS FBG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the first experimental demonstration (to our knowledge) of long-distance unperturbed fundamental optical soliton transmission in conventional single-mode optical fiber. The virtual transparency in the fiber required for soliton transmission, over 15 complete periods, was achieved by using an ultralong Raman fiber laser amplification scheme. Optical soliton pulse duration, pulse bandwidth, and peak intensity are shown to remain constant along the transmission length. Frequency-resolved optical gating spectrograms and numerical simulations confirm the observed optical soliton dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this letter, we report on the inscription of a fourth-order fiber Bragg grating made line-by-line in the optical fiber using a femtosecond laser. Strong Bragg resonance (~17 dB) and low insertion loss (~0.5 dB) were obtained with only 2000 periods. Measured refractive index change of these inscribed lines reaches up to 7 × 10-3. The grating was fully characterized and the low insertion loss together with low polarization-dependent loss were realized compared to gratings made by the point-by-point method. The high temperature annealing experiment shows the grating can survive up to at least 800°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This letter compares two nonlinear media for simultaneous carrier recovery and generation of frequency symmetric signals from a 42.7-Gb/s nonreturn-to-zero binary phase-shift-keyed input by exploiting four-wave mixing in a semiconductor optical amplifier and a highly nonlinear optical fiber for use in a phase-sensitive amplifier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we experimentally investigate the response time of humidity sensors based on polymer optical fiber Bragg gratings. By the use of etching with acetone we can control the poly (methyl methacrylate) based fiber in order to reduce the diffusion time of water into the polymer and hence speed up the relative wavelength change caused by humidity variations. A much improved response time of 12 minutes for humidity decrease and 7 minutes for humidity increase, has been achieved by using a polymer optical fiber Bragg grating with a reduced diameter of 135 microns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a concept for all-optical differential phase-shift keying (DPSK) signal regeneration, based on a new design of Raman amplified nonlinear loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase noise reduction in high-speed DPSK systems by use of the RA-NOLM combined with spectral filtering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We numerically demonstrate for the first time that dispersion management and in-line nonlinear optical loop mirrors can achieve all-optical passive regeneration and distance-unlimited transmission of a soliton data stream at 40 Gbit/s over standard fibre.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fiber optic free water in fuel (WIF) sensor is proposed by utilizing a long period fiber grating (LPFG). The existence of free water in fuel is indicated by the appearance of a characteristic loss band. The free water level in fuel can be determined by measuring the transmissions of two characteristic loss bands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work addresses the control of the mPOF Bragg grating spectrum properties through acousto-optic modulation. For the first time, the interaction of a flexural acoustic wave, generated by longitudinal excitation of different frequencies, with the Bragg grating will be presented. Also it will be demonstrated the quasi linear relationship between PZT load and maximum reflected power/ 3dB bandwidth of the reflected spectrum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A low-cost fiber optic sensor system based on multimode fiber and an LED light source is presented. A multimode fiber Bragg grating (MMFBG) element is used as a strain sensor. In a matched grating scheme, a MMFBG similar to the sensing one was used as a reference in the receiving unit. For detection of large wavelength shift we demonstrated the feasibility of MMFBG wavelength detection using a single mode fiber fused coupler edge filter. The high cost normally associated with wavelength interrogators for single mode fiber FBG sensors was overcome by the utilization of a low cost multimode fiber pigtailed LED light source. The multimode fiber sensing system has the potential of maintaining much of the advantages of its single mode FBG sensor system counterparts. The MMFBG sensing schemes could be used for short distance, high sensitivity, high speed, strain, temperature and acoustic sensing applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.