183 resultados para Femtosecond laser micromaching


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 1.2X500μm slot was engraved across a fiber Bragg grating (FBG) using femtosecond laser patterning and chemical etching. liquid core FBGs were constructed and their sensitivity to refractive index of up to 10-6/pm was measured.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe how the guiding properties of buried, micro-structured waveguides that can be formed in a lithium niobate crystal by direct femtosecond laser writing can be optimized for low-loss operation in the mid-infrared region beyond 3 μm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long period gratings written into a standard optical fibre were modified by a femtosecond laser, which produced an asymmetric change to the cladding's refractive index resulting in a directional bend sensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full text: It seems a long time ago now since we were at the BCLA conference. The excellent FIFA World Cup in Brazil kept us occupied over the summer as well as Formula 1, Wimbledon, Tour de France, Commonwealth Games and of course exam paper marking! The BCLA conference this year was held in Birmingham at the International Convention Centre which again proved to be a great venue. The number of attendees overall was up on previous years, and at a record high of 1500 people. Amongst the highlights at this year's annual conference was the live surgery link where Professor Sunil Shah demonstrated the differences in technique between traditional phacoemulsification cataract surgery and femtosecond assisted phacoemulsification cataract surgery. Dr. Raquel Gil Cazorla, a research optometrist at Aston University, assisted in the procedure including calibrating the femtosecond laser. Another highlight for me was the session that I chaired, which was the international session organised by IACLE (International Association of CL Educators). There was a talk by Mirjam van Tilborg about dry eye prevalence in the Netherlands and how it was managed by medical general practitioners (GPs) or optometrists. It was interesting to know that there are only 2 schools of optometry there and currently under 1000 registered optometrists there. It also seems that GPs were more likely to blame CL as the cause for dry eye whereas optometrists who had a fuller range of tests were better at solving the issue. The next part of the session included the presentation of 5 selected posters from around the world. The posters were also displayed in the main poster area but were selected to be presented here as they had international relevance. The posters were: 1. Motivators and Barriers for Contact Lens Recommendation and Wear by Nilesh Thite (India) 2. Contact lens hygiene among Saudi wearers by Dr. Ali Masmaly (Saudi) 3. Trends of contact lens prescribing and patterns of contact lens practice in Jordan by Dr. Mera Haddad (Jordan) 4. Contact Lens Behaviour in Greece by Dr. Dimitra Makrynioti (Greece) 5. How practitioners inform ametropes about the benefits of contact lenses and overcome the potential barriers: an Italian survey, by Dr. Fabrizio Zeri (Italy) It was interesting to learn about CL practice in different parts, for example the CL wearing population ration in Saudi Arabia is around 1:2 Male:Female (similar to other parts of the world) and although the sale of CL is restricted to registered practitioners there are many unregistered outlets, like clothing stores, that flout the rules. In Jordan some older practitioners will still advise patients to use tap water or even saliva! But thankfully the newer generation of practitioners have been educated not to advise this. In Greece one of the concerns was that some practitioners may advise patients to use disposable lenses for longer than they should and again it seems to be the practitioners with inadequate education that would do this. In India it was found that cost was one barrier to using contact lenses but also some practitioners felt that they shouldn’t offer CLs due to cost too. In Italy sensitive eyes and CL care and maintenance were the barriers to CL wear but the motivators were vision and comfort and aesthetics. Finally the international session ended with the IACLE travel award and educator awards presented by IACLE president Shehzad Naroo and BCLA President Andrew Yorke. The travel award went to Wang Ling, Jinling Institute of Technology, Nanjing, China. There were 3 regional Contact Lens Educator of the Year Awards sponsored by Coopervision and presented by Dr. J.C. Aragorn of Coopervision. 1. Asia Pacific Region – Dr. Rajeswari Mahadevan of Sankara Nethralaya Medical Research Foundation, Chennai, India 2. Americas Region – Dr. Sergio Garcia of University of La Salle, Bogotá and the University Santo Tomás, Bucaramanga, Colombia 3. Europe/Africa – Middle East Region: Dr. Eef van der Worp, affiliated with the University of Maastricht, the Netherlands The posters above were just a small selection of those displayed at this year's BCLA conference. If you missed the BCLA conference then you can see the abstracts for all posters and talks in a virtual issue of CLAE very soon. The poster competition was kindly sponsored by Elsevier. The poster winner this year was: Joan Gispets – Corneal and Anterior Chamber Parameters in Keratoconus The 3 runners up were: Debby Yeung – Scleral Lens Central Corneal Clearance Assessment with Biomicroscopy Sarah L. Smith – Subjective Grading of Lid Margin Staining Heiko Pult – Impact of Soft Contact Lenses on Lid Parallel Conjunctival Folds My final two highlights are a little more personal. Firstly, I was awarded Honorary Life Fellowship of the BCLA for my work with the Journal, and I would like to thank the BCLA, Elsevier, the editorial board of CLAE, the reviewers and the authors for their support of my role. My final highlight from the BCLA conference this year was the final presentation of the conference – the BCLA Gold Medal award. The recipient this year was Professor Philip Morgan with his talk ‘Changing the world with contact lenses’. Phil was the person who advised me to go to my first BCLA conference in 1994 (funnily he didn’t attend himself as he was busy getting married!) and now 20 years later he was being honoured with the accolade of being the BCLA Gold Medallist. The date of his BCLA medal addressed was shared with his father's birthday so a double celebration for Phil. Well done to outgoing BCLA President Andy Yorke and his team at the BCLA (including Nick Rumney, Cheryl Donnelly, Sarah Greenwood and Amir Khan) on an excellent conference. And finally welcome to new President Susan Bowers. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a phase-shifted fiber Bragg grating is proposed for strain sensing at extreme temperatures. The grating structure is written in bare standard single mode fiber, using the point-by-point femtosecond laser technique. Strain measurements are performed at temperatures ranging from room temperature up to 900°C. By subjecting the sensor to such extreme conditions, the wavelength of the grating increases. © 2014 OSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geometric scaling of a Kerr-lens mode-locked Yb:YAG thin-disk oscillator yields femtosecond pulses with an average output power of 270 W. The scaled system delivers femtosecond (210-330 fs) pulses with a peak power of 38 MW. These values of average and peak power surpass the performance of any previously reported femtosecond laser oscillator operated in atmospheric air.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient’s visual function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A waveguide-saturable absorber with low propagation loss is fabricated by femtosecond pulses in YAG:Cr4+ crystal. Q-switch operation of a Yb fiber laser with the new saturable absorber having absorption saturation parameters similar to the bulk YAG:Cr4+ crystal is demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last decade, microfabrication of photonic devices by means of intense femtosecond (fs) laser pulses has emerged as a novel technology. A common requirement for the production of these devices is that the refractive index modification pitch size should be smaller than the inscribing wavelength. This can be achieved by making use of the nonlinear propagation of intense fs laser pulses. Nonlinear propagation of intense fs laser pulses is an extremely complicated phenomenon featuring complex multiscale spatiotemporal dynamics of the laser pulses. We have utilized a principal approach based on finite difference time domain (FDTD) modeling of the full set of Maxwell's equations coupled to the conventional Drude model for generated plasma. Nonlinear effects are included, such as self-phase modulation and multiphoton absorption. Such an approach resolves most problems related to the inscription of subwavelength structures, when the paraxial approximation is not applicable to correctly describe the creation of and scattering on the structures. In a representative simulation of the inscription process, the signature of degenerate four wave mixing has been found. © 2012 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A thulium-doped all-fibre laser hybrid mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes generating 500-fs high-order solitons with the pulse energy 10.87 nJ at 1.9 μm wavelength band is demonstrated. © 2014 OSA.