157 resultados para laser optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical solitons are important in the modern photonics. Passively mode locked erbium doped fiber lasers provide a neat platform to study soliton dynamics. Soliton interaction dynamics is important for various applications and has quite different manifestations, including e.g. such as bound state solitons [1], soliton rains [2]. Soliton interactions have been observed with different mode locking approaches such as figure-of-eight [3] and nonlinear polarization rotation [4]. Carbon nanotubes (CNT) have recently been widely applied as an efficient saturable absorber for passively mode locked fiber lasers. We have recently studied the polarization dynamics in a CNT mode locked vector soliton erbium doped fiber laser [5]. So far, the polarization dynamics of bound state solitons have yet to be investigated. In this report, we present a wide range of polarization dynamics of bound state solitons generated in a CNT mode locked erbium doped fiber laser. The fiber laser consists of ∼ 2 m highly doped erbium fiber (Liekki Er80-8/125) as the gain medium, an optical isolator to ensure unidirectional oscillation anda 980 nm laser diode is used to pump the gain through the 1550/980 nm wavelength division multiplexer. A fused 10:90 coupler is used to couple 10 % of the light out of the laser cavity and two in-line polarization controllers (NewPort) are used to control the birefringence of the cavity and polarization of the pump light respectively. The total cavity length is ∼ 7.8 m indicating a 25.7 MHz fundamental repetition rate. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tunable Raman fiber lasers have attracted great interest owing to their high efficiency and reliability important for applications, such as optical fiber communications and sensing, spectroscopy, and instrument testing. Their tuning range is defined by the Raman gain bandwidth amounting to about 40 nm in telecom spectral range (∼1550 nm) for conventional silica single mode fibers (SMF). To increase the range, highly nonlinear fibers which broaden pump spectrum may be incorporated in the cavity of Raman fiber lasers, see e.g. [1]. Another approach is to involve Rayleigh scattering forming random distributed feedback in a relatively long fiber resulting in prominent flattening of the tuning curve [2]. In this paper we report on combination of these two techniques in tunable Raman fiber lasers thus providing great improvement of their output characteristics. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lasers with random distributed feedback (DFB) owing to Rayleigh scattering in optical fibers [1] have attracted a great interest: a number of papers demonstrating new laser schemes and applications have been proposed [2-7] recently. Moreover, the generation output power and, more generally, generation power distribution could be described both analytically and numerically within simple balance models [8-9]. However, spectral properties of random DFB fiber lasers are not studied except some attempt made in [10]. Generation spectrum of random DFB fiber laser is quite broad (more than 1 nm), and physical mechanisms of its formation and broadening are still unclear. There is no any practical solution up to date to minimize the generation spectrum width. Here we experimentally show the way to minimize the generation spectral width. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By tracing the beat frequency between two polarization modes generated from a DBR fiber laser, a novel human pulse monitoring device is demonstrated. The results show the device could be very useful for healthcare. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We numerically show the feasibility of Nyquist optical pulse generation in a mode-locked fibre laser with an in-cavity flat-top spectral filter. The proposed scheme offers the possibility to generate high-quality sinc-shaped pulses with tunable bandwidth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that self-similar evolution in a fiber laser can stabilize spectra broader than the gain bandwidth. 21-fs pulses, which are the shortest from a fiber laser to date, and 200-nm spectra are generated. © OSA 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ∼22-km-long optical fiber. Twenty-two lasing lines with spacing of ∼100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a CW random distributed feedback Raman fiber laser operating in a 1.2 μm spectral band. The laser generates up to 3.8 W of the quasi-CW radiation at 1175 nm with the narrow spectrum of 1 nm. Conversion efficiency reaches 60%. Up to 1 W is generated at the second Stokes wavelength of 1242 nm. It is shown that the generation spectrum of RDFB Raman fiber laser is much narrower than the spectrum in the system without a weak random feedback. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of experimental and theoretical study of an energy absorption of femtosecond laser pulse in fused silica. Fundamental and second harmonics of ytterbium laser were used in experiment while general case was considered theoretically and numerically. More efficient absorption at the second harmonics is confirmed both experimentally and numerically. Quantitative characterization of the theoretical model is performed by fitting key parameters of the absorption process such as cross-section of multi-photon absorption and effective electronic collision and recombination times.