219 resultados para Cognex optical inspection systems
Resumo:
A dual-parameter optical sensor has been realized by UV-writing a long-period and a Bragg grating structure in D-fiber. The hybrid configuration permits the detection of the temperature from the latter and measuring the external refractive index from the former responses, respectively. The employment of the D-fiber allows as effective modification and enhancement of the device sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.01%.
Resumo:
In this letter, we report the performance of a fiber optical parametric amplifier (OPA) when used as a source or intermediate node amplifier in a dense wavelength-division-multiplexed (DWDM) long-haul transmission testbed with 26 DWDM channels modulated at 43.7-Gb/s return-to-zero differential phase-shift keying. In both scenarios, we demonstrate similar performance to an erbium-doped fiber amplifier. This shows the OPAs compatibility with high-capacity (>1 Tb/s) long-haul communication systems.
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
We report for the first time on the limitations in the operational power range of few-mode fiber based transmission systems, employing 28Gbaud quadrature phase shift keying transponders, over 1,600km. It is demonstrated that if an additional mode is used on a preexisting few-mode transmission link, and allowed to optimize its performance, it will have a significant impact on the pre-existing mode. In particular, we show that for low mode coupling strengths (weak coupling regime), the newly added variable power mode does not considerably impact the fixed power existing mode, with performance penalties less than 2dB (in Q-factor). On the other hand, as mode coupling strength is increased (strong coupling regime), the individual launch power optimization significantly degrades the system performance, with penalties up to ∼6dB. Our results further suggest that mutual power optimization, of both fixed power and variable power modes, reduces power allocation related penalties to less than 3dB, for any given coupling strength, for both high and low differential mode delays. © 2013 Optical Society of America.
Resumo:
We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.
Resumo:
We develop an analytical theory which allows us to identify the information spectral density limits of multimode optical fiber transmission systems. Our approach takes into account the Kerr-effect induced interactions of the propagating spatial modes and derives closed-form expressions for the spectral density of the corresponding nonlinear distortion. Experimental characterization results have confirmed the accuracy of the proposed models. Application of our theory in different FMF transmission scenarios has predicted a ~10% variation in total system throughput due to changes associated with inter-mode nonlinear interactions, in agreement with an observed 3dB increase in nonlinear noise power spectral density for a graded index four LP mode fiber. © 2013 Optical Society of America.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.
Resumo:
By transforming the optical fiber span into an ultralong cavity laser, we experimentally demonstrate quasilossless transmission over long (up to 75 km) distances and virtually zero signal power variation over shorter (up to 20 km) spans, opening the way for the practical implementation of integrable nonlinear systems in optical fiber. As a by-product of our technique, the longest ever laser (to the best of our knowledge) has been implemented, with a cavity length of 75 km. A simple theory of the lossless fiber span, in excellent agreement with the observed results, is presented. © 2006 The American Physical Society.
Resumo:
A flexible method for fabricating shallow optical waveguides by using femtosecond laser writing of patterns on a metal coated glass substrate followed by ion-exchange is described. This overcomes the drawbacks of low index contrast and high induced stress in waveguides directly written using low-repetition rate ultrafast laser systems. When compared to conventional lithography, the technique is simpler and has advantages in terms of flexibility in the types of structures which can be fabricated.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.