29 resultados para transmission loss
Resumo:
It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.
Resumo:
It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.
Resumo:
A miniature slow light delay line with the record large delay time, small transmission loss, dispersion, and effective speed of light is proposed and demonstrated using the SNAP (Surface Nanoscale Axial Photonics) technology. © 2014 OSA.
Resumo:
We report on the effective side detection of radiation-mode out-coupling from blazed fiber Bragg gratings (BFBGs) fabricated in single-mode fiber (SMF) and multimode fiber (MMF). The far-field radiation power distribution from BFBGs have been measured achieving a high spatial-spectral resolution (0.17 mm/nm). We have also investigated comparatively the transmission-loss characteristics of BFBGs in both fiber types, fabricated using phase-mask and holographic inscription techniques. Our results reveal clearly that the radiation out-coupling from BFBGs is significantly stronger and spectrally more confined in MMF than in SMF.
Resumo:
The transmission loss in polymer optical fiber (POF) is much higher than that in silica fiber. Very strong absorption bands dominate throughout the visible and near infrared. Optical absorption increases the internal temperature of the polymer fiber and reduces the wavelength of any POF Bragg grating (POFBG) inscribed within the fiber. In this letter, we have investigated the wavelength drift of FBGs inscribed in poly(methyl methacrylate)-based fiber under illumination at different wavelengths. The experiments have shown that the characteristic wavelength of such a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fiber is established, depending on the surrounding humidity, optical power applied, and operation wavelength.
Resumo:
Graphene Bragg gratings (GBGs) on microfiber are proposed and investigated in this paper. Numerical analysis and simulated results show that the mode distribution, transmission loss, and central wavelength of the GBG are controllable by changing the diameter of the microfiber or the refractive index of graphene. Such type of GBGs with tunability may find important applications in optical fiber communication and sensing as all-fiber in-line devices.
Resumo:
Recently, we have extended fibre grating devices in to mid-IR range. Fibre Bragg gratings (FBGs) and long-period gratings (LPGs) with spectral responses from near-IR (800nm) to mid-IR ( ∼ 2μm) have been demonstrated with transmission loss as strong as 10-20dB. 2μm FBG and LPG showed temperature and refractive index (RI) sensitivities of ∼ 91pm/°C and 357nm/RIU respectively. Finally, we have performed a bio sensing experiment by monitoring the degradation of foetal bovine serum at room temperature. The results encouragingly show that the mid-IR LPGs can be an ideal biosensor platform as they have high RI sensitivity and can be used to detect concentration change of bio-samples. © 2012 SPIE.
Resumo:
The first demonstration of a hollow core photonic bandgap fiber suitable for high-rate data transmission at 2µm is presented. Using a custom built Thulium doped fiber amplifier, error-free 8Gbit/s transmission in an optically amplified data channel at 2008nm is reported for the first time.
Resumo:
We demonstrate 40x43Gbit/s RZ-DQPSK transmission over 1000km of ultra-low-loss G.652 fibre with 250km amplifier spacing. Hybrid Raman-EDFA amplification with co- and contra-directional Raman pumping enables 27dB Raman gain per span and error-free post-FEC performance. ©2010 IEEE.
Resumo:
The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 μm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported. © 2013 Optical Society of America.
Resumo:
World's first demonstration of WDM transmission in a HC-PBGF at the predicted low loss region of 2m is presented. A total capacity of 16 Gbit/s is achieved using 1×8.5 Gbit/s and 3×2.5 Gbit/s channels modulated using NRZ OOK over 290 meters of hollow core fiber. © 2013 OSA.
Resumo:
We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp -content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we present an adaptive unequal loss protection (ULP) scheme for H264/AVC video transmission over lossy networks. This scheme combines erasure coding, H.264/AVC error resilience techniques and importance measures in video coding. The unequal importance of the video packets is identified in the group of pictures (GOP) and the H.264/AVC data partitioning levels. The presented method can adaptively assign unequal amount of forward error correction (FEC) parity across the video packets according to the network conditions, such as the available network bandwidth, packet loss rate and average packet burst loss length. A near optimal algorithm is developed to deal with the FEC assignment for optimization. The simulation results show that our scheme can effectively utilize network resources such as bandwidth, while improving the quality of the video transmission. In addition, the proposed ULP strategy ensures graceful degradation of the received video quality as the packet loss rate increases. © 2010 IEEE.
Resumo:
This thesis describes an industrial research project carried out in collaboration with STC Components, Harlow, Essex. Technical and market trends in the use of surface acoustic wave (SAW) devices are reviewed. As a result, three areas not previously addressed by STC were identified: lower insertion loss designs, higher operating frequencies and improved temperature dependent stability. A review of the temperature performance of alternative lower insertion loss designs,shows that greater use could be made of the on-site quartz growing plant. Data is presented for quartz cuts in the ST-AT range. This data is used to modify the temperature performance of a SAW filter. Several recently identified quartz orientations have been tested. These are SST, LST and X33. Problems associated with each cut are described and devices demonstrated. LST quartz, although sensitive to accuracy of cut, is shown to have an improved temperature coefficient over the normal ST orientation. Results show that its use is restricted due to insertion loss variations with temperature. Effects associated with split-finger transducers on LST-quartz are described. Two low-loss options are studied, coupled resonator filters for very narrow bandwidth applications and single phase unidirectional transducers (SPUDT) for fractional bandwidths up to about 1%. Both designs can be implemented with one quarter wavelength transducer geometries at operating frequencies up to 1GHz. The SPUDT design utilised an existing impulse response model to provide analysis of ladder or rung transducers. A coupled resonator filter at 400MHz is demonstrated with a matched insertion loss of less than 3.5dB and bandwidth of 0.05%. A SPUDT device is designed as a re-timing filter for timing extraction in a long haul PCM transmission system. Filters operating at 565MHz are demonstrated with insertion losses of less than 6dB. This basic SPUDT design is extended to a maximally distributed version and demonstrated at 450MHz with 9.8dB insertion loss.
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.