19 resultados para random walk


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random Walk with Restart (RWR) is an appealing measure of proximity between nodes based on graph structures. Since real graphs are often large and subject to minor changes, it is prohibitively expensive to recompute proximities from scratch. Previous methods use LU decomposition and degree reordering heuristics, entailing O(|V|^3) time and O(|V|^2) memory to compute all (|V|^2) pairs of node proximities in a static graph. In this paper, a dynamic scheme to assess RWR proximities is proposed: (1) For unit update, we characterize the changes to all-pairs proximities as the outer product of two vectors. We notice that the multiplication of an RWR matrix and its transition matrix, unlike traditional matrix multiplications, is commutative. This can greatly reduce the computation of all-pairs proximities from O(|V|^3) to O(|delta|) time for each update without loss of accuracy, where |delta| (<<|V|^2) is the number of affected proximities. (2) To avoid O(|V|^2) memory for all pairs of outputs, we also devise efficient partitioning techniques for our dynamic model, which can compute all pairs of proximities segment-wisely within O(l|V|) memory and O(|V|/l) I/O costs, where 1<=l<=|V| is a user-controlled trade-off between memory and I/O costs. (3) For bulk updates, we also devise aggregation and hashing methods, which can discard many unnecessary updates further and handle chunks of unit updates simultaneously. Our experimental results on various datasets demonstrate that our methods can be 1–2 orders of magnitude faster than other competitors while securing scalability and exactness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous studies find that monetary models of exchange rates cannot beat a random walk model. Such a finding, however, is not surprising given that such models are built upon money demand functions and traditional money demand functions appear to have broken down in many developed countries. In this article, we investigate whether using a more stable underlying money demand function results in improvements in forecasts of monetary models of exchange rates. More specifically, we use a sweep-adjusted measure of US monetary aggregate M1 which has been shown to have a more stable money demand function than the official M1 measure. The results suggest that the monetary models of exchange rates contain information about future movements of exchange rates, but the success of such models depends on the stability of money demand functions and the specifications of the models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Are the learning procedures of genetic algorithms (GAs) able to generate optimal architectures for artificial neural networks (ANNs) in high frequency data? In this experimental study,GAs are used to identify the best architecture for ANNs. Additional learning is undertaken by the ANNs to forecast daily excess stock returns. No ANN architectures were able to outperform a random walk,despite the finding of non-linearity in the excess returns. This failure is attributed to the absence of suitable ANN structures and further implies that researchers need to be cautious when making inferences from ANN results that use high frequency data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the exchange rate forecasting performance of neural network models are evaluated against random walk and a range of time series models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore the parameters are chosen according to what the researcher considers to be the best. Such an approach, however, implies that the risk of making bad decisions is extremely high which could explain why in many studies neural network models do not consistently perform better than their time series counterparts. In this paper through extensive experimentation the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of performing well. Our results show that in general neural network models perform better than traditionally used time series models in forecasting exchange rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For analysing financial time series two main opposing viewpoints exist, either capital markets are completely stochastic and therefore prices follow a random walk, or they are deterministic and consequently predictable. For each of these views a great variety of tools exist with which it can be tried to confirm the hypotheses. Unfortunately, these methods are not well suited for dealing with data characterised in part by both paradigms. This thesis investigates these two approaches in order to model the behaviour of financial time series. In the deterministic framework methods are used to characterise the dimensionality of embedded financial data. The stochastic approach includes here an estimation of the unconditioned and conditional return distributions using parametric, non- and semi-parametric density estimation techniques. Finally, it will be shown how elements from these two approaches could be combined to achieve a more realistic model for financial time series.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtain the exact asymptotic result for the disorder-averaged probability distribution function for a random walk in a biased Sinai model and show that it is characterized by a creeping behavior of the displacement moments with time, similar to v(mu n), where mu <1 is dimensionless mean drift. We employ a method originated in quantum diffusion which is based on the exact mapping of the problem to an imaginary-time Schrodinger equation. For nonzero drift such an equation has an isolated lowest eigenvalue separated by a gap from quasicontinuous excited states, and the eigenstate corresponding to the former governs the long-time asymptotic behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper compares the UK/US exchange rate forecasting performance of linear and nonlinear models based on monetary fundamentals, to a random walk (RW) model. Structural breaks are identified and taken into account. The exchange rate forecasting framework is also used for assessing the relative merits of the official Simple Sum and the weighted Divisia measures of money. Overall, there are four main findings. First, the majority of the models with fundamentals are able to beat the RW model in forecasting the UK/US exchange rate. Second, the most accurate forecasts of the UK/US exchange rate are obtained with a nonlinear model. Third, taking into account structural breaks reveals that the Divisia aggregate performs better than its Simple Sum counterpart. Finally, Divisia-based models provide more accurate forecasts than Simple Sum-based models provided they are constructed within a nonlinear framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous studies find that monetary models of exchange rates cannot beat a random walk model. Such a finding, however, is not surprising given that such models are built upon money demand functions and traditional money demand functions appear to have broken down in many developed countries. In this paper we investigate whether using a more stable underlying money demand function results in improvements in forecasts of monetary models of exchange rates. More specifically, we use a sweepadjusted measure of US monetary aggregate M1 which has been shown to have a more stable money demand function than the official M1 measure. The results suggest that the monetary models of exchange rates contain information about future movements of exchange rates but the success of such models depends on the stability of money demand functions and the specifications of the models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use non-parametric procedures to identify breaks in the underlying series of UK household sector money demand functions. Money demand functions are estimated using cointegration techniques and by employing both the Simple Sum and Divisia measures of money. P-star models are also estimated for out-of-sample inflation forecasting. Our findings suggest that the presence of breaks affects both the estimation of cointegrated money demand functions and the inflation forecasts. P-star forecast models based on Divisia measures appear more accurate at longer horizons and the majority of models with fundamentals perform better than a random walk model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper compares the experience of forecasting the UK government bond yield curve before and after the dramatic lowering of short-term interest rates from October 2008. Out-of-sample forecasts for 1, 6 and 12 months are generated from each of a dynamic Nelson-Siegel model, autoregressive models for both yields and the principal components extracted from those yields, a slope regression and a random walk model. At short forecasting horizons, there is little difference in the performance of the models both prior to and after 2008. However, for medium- to longer-term horizons, the slope regression provided the best forecasts prior to 2008, while the recent experience of near-zero short interest rates coincides with a period of forecasting superiority for the autoregressive and dynamic Nelson-Siegel models. © 2014 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. We use non-linear, artificial intelligence techniques, namely, recurrent neural networks, evolution strategies and kernel methods in our forecasting experiment. In the experiment, these three methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. There is evidence in the literature that evolutionary methods can be used to evolve kernels hence our future work should combine the evolutionary and kernel methods to get the benefits of both.