20 resultados para polypyromellitimide molding powder
Resumo:
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H2NC(CH3)3-n(CH2OH)n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family (n=0, 1, 2), but significantly contrasting structural properties for the member with n=3. © 2007 Elsevier Inc. All rights reserved.
Resumo:
A novel dissolution method was developed, suitable for powder mixtures, based on the USP basket apparatus. The baskets were modified such that the powder mixtures were retained within the baskets and not dispersed, a potential difficulty that may arise when using conventional USP basket and paddle apparatus. The advantages of this method were that the components of the mixtures were maintained in close proximity, maximizing any drug:excipient interaction and leading to more linear dissolution profiles. Two weakly acidic model drugs, ibuprofen and acetaminophen, and a selection of pharmaceutical excipients, including potential dissolution-enhancing alkalizing agents, were chosen for investigation. Dissolution profiles were obtained for simple physical mixtures. The f1 fit factor values, calculated using pure drug as the reference material, demonstrated a trend in line with expectations, with several dissolution enhancers apparent for both drugs. Also, the dissolution rates were linear over substantial parts of the profiles. For both drugs, a rank order comparison between the f1 fit factor and calculated dissolution rate, obtained from the linear section of the dissolution profile, demonstrated a correlation using a significance level of P=0.05. The method was proven to be suitable for discriminating between the effects of excipients on the dissolution of the model drugs. The method design produced dissolution profiles where the dissolution rate was linear for a substantial time, allowing determination of the dissolution rate without mathematical transformation of the data. This method may be suitable as a preliminary excipient-screening tool in the drug formulation development process.
Resumo:
This investigation has been concerned with the behaviour of solid internal lubricant during mixing, compaction, ejection, dewaxing and sintering of iron powder compacts. Zinc stearate (0.01%-4.0%) was added to irregular iron powder by admixing or precipitation from solution. Pressure/density relationships, determined by continuous compaction, and loose packed densities were used to show that small additions of zinc stearate reduced interparticle friction during loose packing and at low compaction pressures. Large additions decreased particle/die-wall friction during compaction and ejection but also caused compaction inhibition. Transverse rupture strengths were determined on compacts containing various stearate based lubricants and it was found that green strength was reduced by the interposition of a thin lubricant layer within inter~particle contacts. Only materials much finer than the iron powder respectively) were able to form such layers. Investigations were undertaken to determine the effect of the decomposition of these lubricants on the development of mechanical properties in dewaxed or sintered compacts. Physical and chemical influences on tensile strength were observed. Decomposition of lubricants was associated with reductions of strength caused by the physical effects of pressure increases and removal of lubricant from interparticle contacts. There were also chemical effects associated with the influence of gaseous decomposition products and solid residues on sintering mechanisms. Thermogravimetry was used to study the decomposition behaviour of various lubricants as free compounds and within compacts. The influence of process variables such as atmosphere type, flow-rate and compact density were investigated. In a reducing atmosphere the decomposition of these lubricants was characterised by two stages. The first involved the rapid decomposition of the hydrocarbon radical. The second, higher temperature, reactions depended on lubricant type and involved solid residues. The removal of lubricant could also markedly affect dimensional change.
Resumo:
The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.
Resumo:
The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges.
Resumo:
Atomic force microscopy has been used to study the surface properties of model spray dried powders. Phase imaging, nanoindentation and force modulation microscopy have differentiated between the different surface material properties of the particles, revealing a regular dispersion of soft, oil rich areas distributed across the particles' surface. Humidity and temperature cycling effects on the caking behavior of the particles have also been investigated, with significant morphology changes and onset of caking found to occur within relatively short periods of time.
Resumo:
This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, a-chymotrypsin (a-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-?-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. a-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w(1)/o/w(2)) utilizing chloroform (CHF) as the organic solvent, l-leucine as a dispersibility enhancer and an internal aqueous phase (w(1)) containing PEG4500 or Pluronic(®) F-68 (PLF68). a-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by (1)H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation a-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08±3.91%), loading (22.31±4.34µg/mg), FPF (fine particle fraction) (37.63±0.97%); FPD (fine particle dose) (179.88±9.43µg), MMAD (mass median aerodynamic diameter) (2.95±1.61µm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44±3.11%), loading (19.31±3.27µg/mg) and activity (81.9±2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases.
Resumo:
Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 mu m, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 mu m), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 mu m). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.
Resumo:
The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.