35 resultados para planar graphs
Resumo:
We study a variation of the graph coloring problem on random graphs of finite average connectivity. Given the number of colors, we aim to maximize the number of different colors at neighboring vertices (i.e. one edge distance) of any vertex. Two efficient algorithms, belief propagation and Walksat are adapted to carry out this task. We present experimental results based on two types of random graphs for different system sizes and identify the critical value of the connectivity for the algorithms to find a perfect solution. The problem and the suggested algorithms have practical relevance since various applications, such as distributed storage, can be mapped onto this problem.
Resumo:
Resource allocation in sparsely connected networks, a representative problem of systems with real variables, is studied using the replica and Bethe approximation methods. An efficient distributed algorithm is devised on the basis of insights gained from the analysis and is examined using numerical simulations,showing excellent performance and full agreement with the theoretical results. The physical properties of the resource allocation model are discussed.
Resumo:
The problem of resource allocation in sparse graphs with real variables is studied using methods of statistical physics. An efficient distributed algorithm is devised on the basis of insight gained from the analysis and is examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.
Resumo:
This article reviews the statistical methods that have been used to study the planar distribution, and especially clustering, of objects in histological sections of brain tissue. The objective of these studies is usually quantitative description, comparison between patients or correlation between histological features. Objects of interest such as neurones, glial cells, blood vessels or pathological features such as protein deposits appear as sectional profiles in a two-dimensional section. These objects may not be randomly distributed within the section but exhibit a spatial pattern, a departure from randomness either towards regularity or clustering. The methods described include simple tests of whether the planar distribution of a histological feature departs significantly from randomness using randomized points, lines or sample fields and more complex methods that employ grids or transects of contiguous fields, and which can detect the intensity of aggregation and the sizes, distribution and spacing of clusters. The usefulness of these methods in understanding the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Creutzfeldt-Jakob disease is discussed. © 2006 The Royal Microscopical Society.
Resumo:
We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.
Resumo:
A numerical continuation method has been carried out seeking solutions for two distinct flow configurations, planar Couette flow (PCF) and laterally heated flow in a vertical slot (LHF). We found that the spanwise vortex solution in LHF identifies a new solution in PCF. The vortical structure of our new solution has the shape of a hairpin observed ubiquitously in high-Reynolds-number turbulent flow, and we believe this discovery may provide the paradigm for a hierarchical organization of coherent structures in turbulent shear layers.
Resumo:
Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.
Resumo:
Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised. © 2012 American Physical Society.
Resumo:
An inverse problem is considered where the structure of multiple sound-soft planar obstacles is to be determined given the direction of the incoming acoustic field and knowledge of the corresponding total field on a curve located outside the obstacles. A local uniqueness result is given for this inverse problem suggesting that the reconstruction can be achieved by a single incident wave. A numerical procedure based on the concept of the topological derivative of an associated cost functional is used to produce images of the obstacles. No a priori assumption about the number of obstacles present is needed. Numerical results are included showing that accurate reconstructions can be obtained and that the proposed method is capable of finding both the shapes and the number of obstacles with one or a few incident waves.
Resumo:
We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.
Resumo:
We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.
Resumo:
An outline of the state space of planar Couette flow at high Reynolds numbers (Re<105) is investigated via a variety of efficient numerical techniques. It is verified from nonlinear analysis that the lower branch of the hairpin vortex state (HVS) asymptotically approaches the primary (laminar) state with increasing Re. It is also predicted that the lower branch of the HVS at high Re belongs to the stability boundary that initiates a transition to turbulence, and that one of the unstable manifolds of the lower branch of HVS lies on the boundary. These facts suggest HVS may provide a criterion to estimate a minimum perturbation arising transition to turbulent states at the infinite Re limit. © 2013 American Physical Society.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT