155 resultados para optical sensors
Resumo:
This thesis describes novel developments in the fabrication and understanding of type IA fibre Bragg gratings, the uses of said gratings as optical sensors and the interrogation of optical sensors using tilted fibre Bragg gratings. This thesis presents the most detailed study of type IA gratings performed to date and provides the basis of a dual grating optical sensor capable of independently measuring strain and temperature. Until this work it was not known how to reliably fabricate type IA gratings or how they would react to high ambient temperatures, nor was it known what effect external parameters such as fibre type, dopant levels, inscription laser intensity, or hydrogenation levels would have on the physical properties of the grating. This comprehensive study has yielded answers to all of these unknowns and produced several unexpected uses for type IA gratings, such as the use of the previously unreported strong loss band at 1400nm to locally heat fibres by optical absorption and thereby fabricate optically tuneable gratings which do not affect directly adjacent standard gratings. Blazed fibre Bragg gratings have been studied in detail and used to produce several high quality prototype sensor interrogation systems yielding stability an accuracy values unsurpassed by similar devices reported in literature. An accurate distribution map of light radiated by blazed gratings is shown for the first time and has been studied in respect of polarisation state showing that for certain easily achievable conditions a blazed grating spectrometer may be deemed to be polarisation insensitive. In a novel implementation of the system, it is shown that the dynamic wavelength range of a blazed grating spectrometer may be at least doubled by superimposing blazed gratings.
Resumo:
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Resumo:
Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50µm based on poly(methyl methacrylate) (PMMA) and second, endlessly single mode PCF with a core diameter of 6µm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths to no longer than 10cm. However, both have improved attenuation of under 10dB/m in the 800nm spectral region, thus allowing for fibre lengths to be much longer. The focus of current research is to utilise the increased fibre length, widening the range of sensor applications. The Bragg wavelength shift of a grating fabricated in PMMA fibre at 827nm has been monitored whilst the POF is thermally annealed at 80°C for 7 hours. The large length of POF enables real time monitoring of the grating, which demonstrates a permanent negative Bragg wavelength shift of 24nm during the 7 hours. This creates the possibility to manufacture multiplexed Bragg sensors in POF using a single phase mask in the UV inscription manufacturing. TOPAS holds certain advantages over PMMA including a much lower affinity for water, this should allow for the elimination of cross-sensitivity to humidity when monitoring temperature changes or axial strain, which is a significant concern when using PMMA fibre.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
The impact of third-order dispersion (TOD) on optical rogue wave phenomenon is investigated numerically. We validate the TOD coefficient by utilizing the eigenvalue of the associated equation of the nonlinear Schrödinger equation (NLSE). © 2014 OSA.
Resumo:
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.
Resumo:
We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.
Resumo:
The Surface Nanoscale Axial Photonics (SNAP) platform will be reviewed. This platform enables creation of miniature ultralow loss resonant photonic circuits with unprecedented subangstrom precision. The prospective slow light SNAP optofluidic sensors will be described. © 2015 OSA.
Resumo:
This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The author’s hypothesis that ‘it should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)’ is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogator’s peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring.
Resumo:
We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.
Resumo:
We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.