39 resultados para loss-of-coolant-accident


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is that the local insulation material is damaged and maybe transported to the containment sump where it can penetrate and/or block the sump strainers. An experimental and theoretical study, which examines the transport of mineral wool fibers via single and multi-effect experiments is being performed. This paper focuses on the experiments and simulations performed for validation of numerical models of sedimentation and resuspension of mineral wool fiber agglomerates in a racetrack type channel. Three velocity conditions are used to test the response of two dispersed phase fiber agglomerates to two drag correlations and to two turbulent dispersion coefficients. The Eulerian multiphase flow model is applied with either one or two dispersed phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Only one of the single effect experimental scenarios is described here that are used in validation of the numerical models. The scenario examines the suspension and horizontal transport of the fiber agglomerates in a racetrack type channel. The corresponding experiments will be described in an accompanying presentation (see abstract of Seeliger et al.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of coolant accidents (LOCA) in the primary cooling circuit of a nuclear reactor may result in damage to insulation materials that are located near to the leak. The insulation materials released may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fibre agglomerates (MWFA) maybe transported to the containment sump strainers mounted at the inlet of the emergency cooling pumps, where the insulation fibres may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fibre cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Thus, knowledge of transport characteristics of the damaged insulation materials in various scenarios is required to help plan for the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a LOCA. The study entails the generation of fibre agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this presentation is on the experiments performed that characterize the horizontal transport of MWFA, whereas the corresponding CFD simulations are described in an accompanying contribution (see abstract of Cartland Glover et al.). The experiments were performed a racetrack type channel that provided a near uniform horizontal flow. The channel is 0.1 wide by 1.2 m high with a straight length of 5 m and two bends of 0.5 m. The measurement techniques include particle imaging (both wide-angle and macro lens), concurrent particle image velocimetry, ultravelocimetry, laser detection sensors to sense the presence of absence of MWFA and pertinent measurements of the MWFA concentration and quiescent settling characteristics. The transport of the MWFA was observed at velocities of 0.1 and 0.25 m s-1 to verify numerical model behaviour in and just beyond expected velocities in the containment sump of a nuclear reactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses how to calculate damages for the loss of an opportunity by reason of a breach of contract, in the light of the House of Lords judgment in Gregg v Scott concerning clinical negligence. Discusses whether different principles apply to contract claims and torts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: N-3 fatty acids, especially eicosapentaenoic acid (EPA), may possess anticachectic properties. This trial compared a protein and energy dense supplement enriched with n-3 fatty acids and antioxidants (experimental: E) with an isocaloric isonitrogenous control supplement (C) for their effects on weight, lean body mass (LBM), dietary intake, and quality of life in cachectic patients with advanced pancreatic cancer. Methods: A total of 200 patients (95 E; 105 C) were randomised to consume two cans/day of the E or C supplement (480 ml, 620 kcal, 32 g protein ± 2.2 g EPA) for eight weeks in a multicentre, randomised, double blind trial. Results: At enrolment, patients' mean rate of weight loss was 3.3 kg/month. Intake of the supplements (E or C) was below the recommended dose (2 cans/day) and averaged 1.4 cans/day. Over eight weeks, patients in both groups stopped losing weight (Δweight E: -0.25 kg/month versus C: -0.37 kg/month; p=0.74) and LBM (ΔLBM E: +0.27 kg/month versus C: +0.12 kg/month; p=0.88) to an equal degree (change from baseline E and C, p<0.001). In view of evident non-compliance in both E and C groups, correlation analyses were undertaken to examine for potential dose-response relationships. E patients demonstrated significant correlations between their supplement intake and weight gain (r=0.50, p<0.001) and increase in LBM (r=0.33, p=0.036). Such correlations were not statistically significant in C patients. The relationship of supplement intake with change in LBM was significantly different between E and C patients (p=0.043). Increased plasma EPA levels in the E group were associated with weight and LBM gain (r=0.50, p<0.001; r=0.51, p=0.001). Weight gain was associated with improved quality of life (p<0.01) only in the E group. Conclusion: Intention to treat group comparisons indicated that at the mean dose taken, enrichment with n-3 fatty acids did not provide a therapeutic advantage and that both supplements were equally effective in arresting weight loss. Post hoc dose-response analysis suggests that if taken in sufficient quantity, only the n-3 fatty acid enriched energy and protein dense supplement results in net gain of weight, lean tissue, and improved quality of life. Further trials are required to examine the potential role of n-3 enriched supplements in the treatment of cancer cachexia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with cancer often undergo a specific loss of skeletal muscle mass, while the visceral protein reserves are preserved. This condition known as cachexia reduces the quality of life and eventually results in death through erosion of the respiratory muscles. Nutritional supplementation or appetite stimulants are unable to restore the loss of lean body mass, since protein catabolism is increased mainly as a result of the activation of the ATP-ubiquitin-dependent proteolytic pathway. Several mediators have been proposed. An enhanced protein degradation is seen in skeletal muscle of mice administered tumour necrosis factor (TNF), which appears to be mediated by oxidative stress. There is some evidence that this may be a direct effect and is associated with an increase in total cellular-ubiquitin-conjugated muscle proteins. Another cytokine, interleukin-6 (IL-6), may play a role in muscle wasting in certain animal tumours, possibly through both lysosomal (cathepsin) and non-lysosomal (proteasome) pathways. A tumour product, proteolysis-inducing factor (PIF) is produced by cachexia-inducing murine and human tumours and initiates muscle protein degradation directly through activation of the proteasome pathway. The action of PIF is blocked by eicosapentaenoic acid (EPA), which has been shown to attenuate the development of cachexia in pancreatic cancer patients. When combined with nutritional supplementation EPA leads to accumulation of lean body mass and prolongs survival. Further knowledge on the biochemical mechanisms of muscle protein catabolism will aid the development of effective therapy for cachexia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current presentation the basic concepts for CFD modelling are described and feasibility studies are presented. On the example of a complex flow situation at plunging jet conditions the model capabilities are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of insulation debris transport, sedimentation, penetration into the reactor core and head loss build up becomes important to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during loss of coolant accidents. Research projects are being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Helmholtz-Zentrum Dresden-Rossendorf. The projects include experimental investigations of different processes and phenomena of insulation debris in coolant flow and the development of CFD models. Generic complex experiments serve for building up a data base for the validation of models for single effects and their coupling in CFD codes. This paper includes the description of the experimental facility for complex generic experiments (ZSW), an overview about experimental boundary conditions and results for upstream and down-stream phenomena as well as for the long-time behaviour due to corrosive processes. © Carl Hanser Verlag, München.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz (HSZG) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description (see [10-12]). While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated in Rossendorf. In the current paper, the basic concepts for CFD modelling are described and feasibility studies are presented. The model capabilities are demonstrated via complex flow situations, where a plunging jet agitates insulation debris. © Carl Hanser Verlag, München.