37 resultados para intensity-duration-frequency relations
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
Resumo:
Purpose – The UK experienced a number of Extreme Weather Events (EWEs) during recent years and a significant number of businesses were affected as a result. With the intensity and frequency of weather extremes predicted in the future, enhancing the resilience of businesses, especially of Small and Medium-sized Enterprises (SMEs), who are considered as highly vulnerable, has become a necessity. However, little research has been undertaken on how construction SMEs respond to the risk of EWEs. In seeking to help address this dearth of research, this investigation sought to identify how construction SMEs were being affected by EWEs and the coping strategies being used. Design/methodology/approach – A mixed methods research design was adopted to elicit information from construction SMEs, involving a questionnaire survey and case study approach. Findings – Results indicate a lack of coping strategies among the construction SMEs studied. Where the coping strategies have been implemented, these were found to be extensions of their existing risk management strategies rather than radical measures specifically addressing EWEs. Research limitations/implications – The exploratory survey focused on the Greater London area and was limited to a relatively small sample size. This limitation is overcome by conducting detailed case studies utilising two SMEs whose projects were located in EWE prone localities. The mixed method research design adopted benefits the research by presenting more robust findings. Practical implications – A better way of integrating the potential of EWEs into the initial project planning stage is required by the SMEs. This could possibly be achieved through a better risk assessment model supported by better EWE prediction data. Originality/value – The paper provides an original contribution towards the overarching agenda of resilience of SMEs and policy making in the area of EWE risk management. It informs both policy makers and practitioners on issues of planning and preparedness against EWEs.
Resumo:
Projections into future increasingly suggest that the intensity and frequency of Extreme Weather Events (EWEs) will increase in the future. This has demanded the business organisations as well to be prepared to face the increasing risk of EWEs, in order to ensure their business continuity. However, current evidence base suggests that businesses, especially SMEs, are not adequately prepared to face the threat of such events. Ability to adequately prepare them has been hindered by the lack of in depth studies addressing this issue. The paper presents a doctoral study designed to investigate the resilience of SMEs operating in the construction sector; which is said to be a highly vulnerable sector for the impacts of EWEs, and their supply chains to EWEs. A conceptual framework developed to investigate this issue is presented and explained. It is argued that the resilience of construction SMEs and their supply chains against EWEs can be improved by a combination of reducing their vulnerability, enhancing coping capacity and implementing coping mechanisms. Importance of undertaking a broader view to include the whole supply chain in making business decisions with regard to EWEs by SMEs is also highlighted.
Resumo:
Small and Medium-scale Enterprises (SMEs); which generate more than one half of the employment and turnover, form an important sector of the UK economy. In fact, SMEs are considered as the backbone of the UK economy due to their significant economic and societal importance. Despite SMEs being the main drivers of the UK economy, they are also said to be the most vulnerable to the impacts from various disruptions such as Extreme Weather Events (EWEs). Consequently, increased intensity and frequency of weather extremes in the UK during the recent past has created a significant impact on the SME community. As the threat of EWEs is expected to further increase in future, the need for SMEs to implement effective coping mechanisms to manage the effects of EWEs is also increasing. This paper aims to identify and evaluate the current coping mechanisms implemented by SMEs to ensure their business continuity in the event of a weather extreme. The paper presents the findings of a questionnaire survey, conducted as part of "Community Resilience to Extreme Weather - CREW" research project, addressing this issue. It is identified that SMEs mostly rely on generic business continuity strategies as opposed to property level protection measures. The paper highlights the importance of raising the uptake of coping strategies by SMEs, as many were found without adequate coping strategies to deal with the risk of EWEs.
Resumo:
Enhancing the resilience of local communities to weather extremes has gained significant interest over the years, amidst the increased intensity and frequency of such events. The fact that such weather extremes are forecast to further increase in number and severity in future has added extra weight to the importance of the issue. As a local community consists of a number of community groups such as households, businesses and policy makers, the actions of different community groups in combination will determine the resilience of the community as a whole. An important role has to be played by Small and Medium-sized Enterprises (SMEs); which is an integral segment of a local community in the UK, in this regard. While it is recognised that they are vital to the economy of a country and determines the prosperity of communities, they are increasingly vulnerable to effects of extreme weather. This paper discusses some of the exploratory studies conducted in the UK on SMEs and their ability to cope with extreme weather events, specifically flooding. Although a reasonable level of awareness of the risk was observed among the SMEs, this has not always resulted in increased preparedness even if they are located in areas at risk of flooding. The attitude and the motivation to change differed widely between SMEs. The paper presents schemas by which the SMEs can identify their vulnerability better so that they can be populated among a community of SMEs, which can be taken forward to inform policy making in this area. Therefore the main contribution the paper makes to the body of knowledge in the area is a novel way to communicate to SMEs on improving resilience against extreme weather, which will inform some of the policy making initiatives in the UK.
Resumo:
Purpose – The UK has experienced a number of flood events in recent years, and the intensity and frequency of such events are forecast to further increase in future due to changing climatic conditions. Accordingly, enhancing the resilience of small and medium-sized enterprises (SMEs) – which form an important segment in a society – to flood risk, has emerged as an important issue. However, SMEs often tend to underestimate the risk of flooding which tends to have a low priority in their business agenda. The purpose of this paper is to undertake an investigation of adaptation to the risk of flooding considering community-level measures, individual-level property protection, and business continuity and resilience measures. Design/methodology/approach – A total of four short case studies were conducted among SMEs to identify their response to flood risk, and what measures have been undertaken to manage the risk of flooding. Findings – It was observed that SMEs have implemented different property-level protection measures and generic business continuity/risk management measures, based on their requirements, to achieve a desired level of protection. Practical implications – SMEs are likely to positively respond to property-level adaptation following a post-flood situation. It is important that information such as costs/benefits of such measures and different options available are made accessible to SMEs affected by a flood event. Social implications – Implementation of property-level adaptation measures will contribute towards the long term adaptation of the existing building stock to changing climatic conditions. Originality/value – The paper contributes towards policy making on flood risk adaptation and SME decision making, and informs policy makers and practitioners.
Resumo:
Purpose Small and Medium-sized Enterprises (SMEs), which form a significant portion in many economies, are some of the most vulnerable to the impact of Extreme Weather Events (EWEs). This is of particular importance to the construction industry, as an overarching majority of construction companies are SMEs who account for the majority of employment and income generation within the industry. In the UK, previous research has identified construction SMEs as some of the worst affected by EWEs. Design/methodology/approach Given the recent occurrences of EWEs and predictions suggesting increases in both the intensity and frequency of EWEs in the future, improving the resilience of construction SMEs is vital for achieving a resilient construction industry. A conceptual framework is first developed which is then populated and expanded based on empirical evidence. Positioned within a pragmatic research philosophy, case study research strategy was adopted as the overall research strategy in undertaking this investigation. Findings Based on the findings of two in-depth case studies of construction SMEs, a framework was developed to represent EWE resilience of construction SMEs, where resilience was seen as a collective effect of vulnerability, coping strategies and coping capacities of SMEs, characteristics of the EWE and the wider economic climate. Originality/value The paper provides an original contribution towards the overarching agenda of the resilience of SMEs, and policy making in the area of EWE risk management by presenting a novel conceptual framework depicting the resilience of medium-sized construction companies.
Resumo:
The issues involved in employing nonlinear optical loop mirrors (NOLMs) as intensity filters in picosecond soliton transmission were examined in detail. It was shown that inserting NOLMs into a periodically amplified transmission line allowed picosecond solitons to be transmitted under conditions considered infeasible until now. The loop mirrors gave dual function, removing low-power background dispersive waves through saturable absorption and applying a negative feedback mechanism to control the amplitude of the solitons. The stochastic characteristics of the pulses that were due to amplifier spontaneous-emission noise were investigated, and a number of new properties were determined. In addition, the mutual interaction between pulses was also significantly different from that observed for longer-duration solitons. The impact of Raman scattering in the computations was included and it was shown that soliton self-frequency shifts may be eliminated by appropriate bandwidth restrictions.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fiber amplifiers in 2000. Similaritons in fiber amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fibre amplifiers in 2000. Similaritons in fibre amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals. In this work, we review the physics underlying the generation of parabolic similaritons as well as recent results obtained in a wide range of experimental configurations.
Resumo:
Background The somatosensory cortex has been inconsistently activated in pain studies and the functional properties of subregions within this cortical area are poorly understood. To address this we used magnetoencephalography (MEG), a brain imaging technique capable of recording changes in cortical neural activity in real-time, to investigate the functional properties of the somatosensory cortex during different phases of the visceral pain experience. Methods In eight participants (4 male), 151-channel whole cortex MEG was used to detect cortical neural activity during 25 trials lasting 20 seconds each. Each trial comprised four separate periods of 5 seconds in duration. During each of the periods, different visual cues were presented, indicating that period 1=rest, period 2=anticipation, period 3=pain and period 4=post pain. During period 3, participants received painful oesophageal balloon distensions (four at 1 Hz). Regions of cortical activity were identified using Synthetic Aperture Magnetometry (SAM) and by the placement of virtual electrodes in regions of interest within the somatosensory cortex, time-frequency wavelet plots were generated. Results SAM analysis revealed significant activation with the primary (S1) and secondary (S2) somatosensory cortices. The time-frequency wavelet spectrograms showed that activation in S1 increased during the anticipation phase and continued during the presentation of the stimulus. In S2, activation was tightly time and phase-locked to the stimulus within the pain period. Activations in both regions predominantly occurred within the 10–15 Hz and 20–30 Hz frequency bandwidths. Discussion These data are consistent with the role of S1 and S2 in the sensory discriminatory aspects of pain processing. Activation of S1 during anticipation and then pain may be linked to its proposed role in attentional as well as sensory processing. The stimulus-related phasic activity seen in S2 demonstrates that this region predominantly encodes information pertaining to the nature and intensity of the stimulus.
Resumo:
We investigate the use of nonlinear optical loop mirrors as saturable absorbers in picosecond soliton transmission systems. It is found that they allow short (1–5-ps) pulses to be propagated through chains of optical amplifiers spaced at intervals of typically 10 km. The loop mirror removes dispersive waves and stabilizes the peak amplitude of the soliton. An additional advantage is that the self-frequency shift of the soliton may be suppressed by bandwidth filtering without causing growth of dispersive waves at the center of the passband. The timing jitter and soliton interactions present in the scheme are also described.
Resumo:
This paper contributes to the literature on the intra-firm diffusion of innovations by investigating the factors that affect the firm’s decision to adopt and use sets of complementary innovations. We define complementary innovations those innovations whose joint use generates super additive gains, i.e. the gain from the joint adoption is higher than the sum of the gains derived from the adoption of each innovation in isolation. From a theoretical perspective, we present a simple decision model, whereby the firm decides ‘whether’ and ‘how much’ to invest in each of the innovations under investigation based upon the expected profit gain from each possible combination of adoption and use. The model shows how the extent of complementarity among the innovations can affect the firm’s profit gains and therefore the likelihood that the firm will adopt these innovations jointly, rather than individually. From an empirical perspective, we focus on four sets of management practices, namely operating (OMP), monitoring (MMP), targets (TMP) and incentives (IMP) management practices. We show that these sets of practices, although to a different extent, are complementary to each other. Then, we construct a synthetic indicator of the depth of their use. The resulting intra-firm index is built to reflect not only the number of practices adopted but also the depth of their individual use and the extent of their complementarity. The empirical testing of the decision model is carried out using the evidence from the adoption behaviour of a sample of 1,238 UK establishments present in the 2004 Workplace Employment Relations Survey (WERS). Our empirical results show that the intra-firm profitability based model is a good model in that it can explain more of the variability of joint adoption than models based upon the variability of adoption and use of individual practices. We also investigate whether a number of firm specific and market characteristics by affecting the size of the gains (which the joint adoption of innovations can generate) may drive the intensity of use of the four innovations. We find that establishment size, whether foreign owned, whether exposed to an international market and the degree of homogeneity of the final product are important determinants of the intensity of the joint adoption of the four innovations. Most importantly, our results point out that the factors that the economics of innovation literature has been showing to affect the intensity of use of a technological innovation do also affect the intensity of use of sets of innovative management practices. However, they can explain only a small part of the diversity of their joint adoption use by the firms in the sample.