31 resultados para hierarchical linear model
Resumo:
A new general linear model (GLM) beamformer method is described for processing magnetoencephalography (MEG) data. A standard nonlinear beamformer is used to determine the time course of neuronal activation for each point in a predefined source space. A Hilbert transform gives the envelope of oscillatory activity at each location in any chosen frequency band (not necessary in the case of sustained (DC) fields), enabling the general linear model to be applied and a volumetric T statistic image to be determined. The new method is illustrated by a two-source simulation (sustained field and 20 Hz) and is shown to provide accurate localization. The method is also shown to locate accurately the increasing and decreasing gamma activities to the temporal and frontal lobes, respectively, in the case of a scintillating scotoma. The new method brings the advantages of the general linear model to the analysis of MEG data and should prove useful for the localization of changing patterns of activity across all frequency ranges including DC (sustained fields). © 2004 Elsevier Inc. All rights reserved.
Resumo:
Sponsorship fit is frequently mentioned and empirically examined as a success factor of sponsorship. While sponsorship fit has been considered as a determinant of sponsorship success, little knowledge exists about the antecedents of sponsorship fit. In the present paper, individual and firm-level antecedents of sponsorship fit are examined in a single hierarchical linear model. Results show that sponsorship fit is influenced by the perception of benefits, the firm’s regional identification, sincerity, relatedness to the sponsored activity, and its dominance. On a partnership level, results show that contract length contributes to sponsorship fit while contract value is found to be unrelated.
Resumo:
This research investigates the interrelationship between service characteristics and switching costs and makes two contributions to the service retailing literature: (1) As a means of better understanding the effectiveness of switching costs, the study suggests a two-dimensional typology of switching costs, including internal and external switching costs and (2) it reveals that the effect of these switching costs on customer loyalty is contingent upon four service characteristics (the IHIP characteristics of service). We carried out a meta-analytic review of the literature on the switching costs-customer loyalty link and created a hierarchical linear model using a sample of 1,694 customers from 51 service industries. Results reveal that external switching costs have a stronger average effect on customer loyalty than do internal switching costs. Moreover, we find that IHIP characteristics moderate the links between switching costs and customer loyalty. Thus, the link between external switching costs and customer loyalty is weaker in industries higher in the four service characteristics (as compared to industries lower in these characteristics), while the opposite moderating effect of service characteristics for the internal switching costs-loyalty link is noted. © 2014 New York University.
Resumo:
Drawing on the perceived organizational membership theoretical framework and the social identity view of dissonance theory, I examined in this study the dynamics of the relationship between psychological contract breach and organizational identification. I included group-level transformational and transactional leadership as well as procedural justice in the hypothesized model as key antecedents for organizational membership processes. I further explored the mediating role of psychological contract breach in the relationship between leadership, procedural justice climate, and organizational identification and proposed separateness–connectedness self-schema as an important moderator of the above mediated relationship. Hierarchical linear modeling results from a sample of 864 employees from 162 work units in 10 Greek organizations indicated that employees' perception of psychological contract breach negatively affected their organizational identification. I also found psychological contract breach to mediate the impact of transformational and transactional leadership on organizational identification. Results further provided support for moderated mediation and showed that the indirect effects of transformational and transactional leadership on identification through psychological contract breach were stronger for employees with a low connectedness self-schema.
Resumo:
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance. © 2011 American Psychological Association.
Resumo:
Underpinned by the resource-based view (RBV), social exchange theory (SET), and a theory of intrinsic motivation (empowerment), I proposed and tested a multi-level model that simultaneously examines the intermediate linkages or mechanisms through which HPWS impact individual and organizational performance. First and underpinned by RBV, I examined at the unit level, collective human capital and competitive advantage as path-ways through which the use of HPWS influences – branch market performance. Second and-, underpinned by social exchange (perceived organizational support) and intrinsic motivation (psychological empowerment) theories, I examined cross and individual level mechanisms through which experienced HPWS may influence employee performance. I tested the propositions of this study with multisource data obtained from junior and senior customer contact employees, and managers of 37 branches of two banks in Ghana. Results of the Structural Equation Modeling (SEM) analysis revealed that (i) collective human capital partially mediated the relationship between management-rated HPWS and competitive advantage, while competitive advantage completely mediated the influence of human capital on branch market performance. Consequently, management-rated HPWS influenced branch market performance indirectly through collective human capital and competitive advantage. Additionally, results of hierarchical linear modeling (HLM) tests of the cross-level influences on the motivational implications of HPWS revealed that (i) management-rated HPWS influenced experienced HPWS; (ii) perceived organizational support (POS) and psychological empowerment fully mediated the influence of experienced HPWS on service-oriented organizational citizenship behaviour (OCB), and; (iii) service-oriented OCB mediated the influence of psychological empowerment and POS on service quality and task performance. I discuss the theoretical and practical implications of these findings.
Resumo:
The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.
Resumo:
Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.
Resumo:
Research has looked at single rather than a configuration of human resource management (HRM) practices to influence creativity so it is not yet clear how these practices synergistically facilitate creativity and organisational performance. I address this significant but unanswered question in a three-part study. In Study 1, I develop a high performance work system (HPWS) for creativity scale. I use Study 2 sample to test the validity of the new scale. In Study 3, I test a multilevel model of the intervening processes through which branch HPWS for creativity influences creativity and branch performance. Specifically, at the branch level, I draw on social context theory and hypothesise that branch HPWS for creativity relates to climate for creativity which, in turn, leads to creativity, and ultimately, to profit. Furthermore, I hypothesise environmental dynamism as a boundary condition of the creativity-profit relationship. At the individual level, I hypothesise a cross-level effect of branch HPWS for creativity on employee-perceived HPWS. I draw on self-determination theory and argue that perceived HPWS for creativity relate to need satisfaction and the psychological pathways of intrinsic motivation and creative process engagement to predict creativity. I also hypothesise climate for creativity as a cross-level moderator of the intrinsic motivation-creativity and creative process engagement-creativity relationships. Results of hierarchical linear modeling (HLM) indicate that ten out of the fifteen hypotheses were supported. The findings of this study respond to calls for HPWS to be designed around a strategic focus by developing and providing initial validity evidence of an HPWS for creativity scale. The results reveal the underlying mechanisms through which HPWS for creativity simultaneously influences individual and branch creativity leading to profit. Lastly, results indicate environmental dynamism to be an important boundary condition of the creativity-profit relationship and climate for creativity as a cross-level moderator of the creative process engagement-creativity.
Resumo:
The major contribution of the study is the identification of a positive link between perceived effective managerial coaching (PEMC) and team task performance and also, the examination of PEMC adopting a multilevel research design and incorporating dual-source data. Specifically, drawing on social psychology, the thesis aims at developing and testing a comprehensive conceptual framework of the antecedents and consequences of PEMC for knowledge workers. The model takes into consideration intrapersonal, interpersonal and team-level characteristics, which relate to PEMC and, subsequently associate with important work outcomes. In this regard, the thesis identifies PEMC as a practice of dual nature in that it may be experienced not only as a one-on-one workplace developmental interaction, but also as a managerial practice that is experienced by each member of a team for co-ordination purposes. Adopting a cross-sectional survey research design, the hypotheses are tested in three organisations in Greece and the UK. In particular, hierarchical linear modelling of 191 employees nested in 60 teams yields that employees’ learning goal orientation (LGO) and high-quality exchanges between an employee and a manager (LMX) are positively related to effective MC, while a manager’s LGO moderates the relationship between employees’ LGO and PEMC. In turn, PEMC, as a one-on-one practice, is related to cognitive outcomes, such as information sharing, while as a shared team practice is related also to behavioural outcomes, including individual and team performance. Overall, the study contributes to a growing body of coaching and management literature that acknowledges PEMC as a core managerial practice.
Resumo:
Based on a review of the servant leadership, well-being, and performance literatures, the first study develops a research model that examines how and under which conditions servant leadership is related to follower performance and well-being alike. Data was collected from 33 leaders and 86 of their followers working in six organizations. Multilevel moderated mediation analyses revealed that servant leadership was indeed related to eudaimonic well-being and lead-er-rated performance via followers’ positive psychological capital, but that the strength and di-rection of the examined relationships depended on organizational policies and practices promot-ing employee health, and in the case of follower performance on a developmental team climate, shedding light on the importance of the context in which servant leadership takes place. In addi-tion, two more research questions resulted from a review of the training literature, namely how and under which conditions servant leadership can be trained, and whether follower performance and well-being follow from servant leadership enhanced by training. We subsequently designed a servant leadership training and conducted a longitudinal field experiment to examine our sec-ond research question. Analyses were based on data from 38 leaders randomly assigned to a training or control condition, and 91 of their followers in 36 teams. Hierarchical linear modeling results showed that the training, which addressed the knowledge of, attitudes towards, and ability to apply servant leadership, positively affected leader and follower perceptions of servant leader-ship, but in the latter case only when leaders strongly identified with their team. These findings provide causal evidence as to how and when servant leadership can be effectively developed. Fi-nally, the research model of Study 1 was replicated in a third study based on 58 followers in 32 teams drawn from the same population used for Study 2, confirming that follower eudaimonic well-being and leader-rated performance follow from developing servant leadership via increases in psychological capital, and thus establishing the directionality of the examined relationships.
Resumo:
It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.
Resumo:
Marketing scholars are increasingly recognizing the importance of investigating phenomena at multiple levels. However, the analyses methods that are currently dominant within marketing may not be appropriate to dealing with multilevel or nested data structures. We identify the state of contemporary multilevel marketing research, finding that typical empirical approaches within marketing research may be less effective at explicitly taking account of multilevel data structures than those in other organizational disciplines. A Monte Carlo simulation, based on results from a previously published marketing study, demonstrates that different approaches to analysis of the same data can result in very different results (both in terms of power and effect size). The implication is that marketing scholars should be cautious when analyzing multilevel or other grouped data, and we provide a discussion and introduction to the use of hierarchical linear modeling for this purpose.
Resumo:
Purpose - The purpose of this study is to develop a performance measurement model for service operations using the analytic hierarchy process approach. Design/methodology/approach - The study reviews current relevant literature on performance measurement and develops a model for performance measurement. The model is then applied to the intensive care units (ICUs) of three different hospitals in developing nations. Six focus group discussions were undertaken, involving experts from the specific area under investigation, in order to develop an understandable performance measurement model that was both quantitative and hierarchical. Findings - A combination of outcome, structure and process-based factors were used as a foundation for the model. The analyses of the links between them were used to reveal the relative importance of each and their associated sub factors. It was considered to be an effective quantitative tool by the stakeholders. Research limitations/implications - This research only applies the model to ICUs in healthcare services. Practical implications - Performance measurement is an important area within the operations management field. Although numerous models are routinely being deployed both in practice and research, there is always room for improvement. The present study proposes a hierarchical quantitative approach, which considers both subjective and objective performance criteria. Originality/value - This paper develops a hierarchical quantitative model for service performance measurement. It considers success factors with respect to outcomes, structure and processes with the involvement of the concerned stakeholders based upon the analytic hierarchy process approach. The unique model is applied to the ICUs of hospitals in order to demonstrate its effectiveness. The unique application provides a comparative international study of service performance measurement in ICUs of hospitals in three different countries. © Emerald Group Publishing Limited.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.