29 resultados para grafi multi-livello social network algebra linguaggi multi layer multislice multiplex
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison.
Resumo:
Word of mouth (WOM) communication is a major part of online consumer interactions, particularly within the environment of online communities. Nevertheless, existing (offline) theory may be inappropriate to describe online WOM and its influence on evaluation and purchase.The authors report the results of a two-stage study aimed at investigating online WOM: a set of in-depth qualitative interviews followed by a social network analysis of a single online community. Combined, the results provide strong evidence that individuals behave as if Web sites themselves are primary "actors" in online social networks and that online communities can act as a social proxy for individual identification. The authors offer a conceptualization of online social networks which takes the Web site into account as an actor, an initial exploration of the concept of a consumer-Web site relationship, and a conceptual model of the online interaction and information evaluation process. © 2007 Wiley Periodicals, Inc. and Direct Marketing Educational Foundation, Inc.
Resumo:
Sales leadership research has typically taken a leader-focused approach, investigating key questions from a top-down perspective. Yet considerable research outside sales has advocated a view of leadership that takes into account the fact that employees look beyond a single designated individual for leadership. In particular, the social networks of leaders have been a popular topic of investigation in the management literature, although coverage in the sales literature remains rare. The present paper conceptualizes the sales leadership role as one in which the leader must manage a network of simultaneous relationships; several types of sales manager relationships, such as the sales-manager-to-top-manager and the sales-manager-to-sales manager relationships, have received limited attention in the sales literature to date. Taking an approach based on social network theory, we develop a conceptualization of the sales manager as a "network engineer," who must manage multiple relationships, and the flows between them. Drawing from this model, we propose a detailed agenda for future sales research. © 2012 PSE National Educational Foundation. All rights reserved.
Resumo:
Background: Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective: To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods: Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results: Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions: This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales.
Resumo:
This paper analyzes the theme of knowledge transfer in supply chain management. The aim of this study is to present the social network analysis (SNA) as an useful tool to study knowledge networks within supply chain, to monitor knowledge flows and to identify the accumulating knowledge nodes of the networks.
Resumo:
In this paper we propose a novel type of multiple-layer photomixer based on amorphous/nano-crystalline-Si. Such a device implies that it could be possible to enhance the conversion efficiency from optical power to THz emission by increasing the absorption length and by reducing the device overheating through the use of substrates with higher thermal conductivity compared to GaAs. Our calculations show that the output power from a two-layer Si-based photomixer is at least ten times higher than that from conventional LT-GaAs photomixers at 1 THz.
Resumo:
Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. © 2013 Optical Society of America.
Resumo:
This PhD thesis analyses networks of knowledge flows, focusing on the role of indirect ties in the knowledge transfer, knowledge accumulation and knowledge creation process. It extends and improves existing methods for mapping networks of knowledge flows in two different applications and contributes to two stream of research. To support the underlying idea of this thesis, which is finding an alternative method to rank indirect network ties to shed a new light on the dynamics of knowledge transfer, we apply Ordered Weighted Averaging (OWA) to two different network contexts. Knowledge flows in patent citation networks and a company supply chain network are analysed using Social Network Analysis (SNA) and the OWA operator. The OWA is used here for the first time (i) to rank indirect citations in patent networks, providing new insight into their role in transferring knowledge among network nodes; and to analyse a long chain of patent generations along 13 years; (ii) to rank indirect relations in a company supply chain network, to shed light on the role of indirectly connected individuals involved in the knowledge transfer and creation processes and to contribute to the literature on knowledge management in a supply chain. In doing so, indirect ties are measured and their role as means of knowledge transfer is shown. Thus, this thesis represents a first attempt to bridge the OWA and SNA fields and to show that the two methods can be used together to enrich the understanding of the role of indirectly connected nodes in a network. More specifically, the OWA scores enrich our understanding of knowledge evolution over time within complex networks. Future research can show the usefulness of OWA operator in different complex networks, such as the on-line social networks that consists of thousand of nodes.
Resumo:
GitHub is the most popular repository for open source code (Finley 2011). It has more than 3.5 million users, as the company declared in April 2013, and more than 10 million repositories, as of December 2013. It has a publicly accessible API and, since March 2012, it also publishes a stream of all the events occurring on public projects. Interactions among GitHub users are of a complex nature and take place in different forms. Developers create and fork repositories, push code, approve code pushed by others, bookmark their favorite projects and follow other developers to keep track of their activities. In this paper we present a characterization of GitHub, as both a social network and a collaborative platform. To the best of our knowledge, this is the first quantitative study about the interactions happening on GitHub. We analyze the logs from the service over 18 months (between March 11, 2012 and September 11, 2013), describing 183.54 million events and we obtain information about 2.19 million users and 5.68 million repositories, both growing linearly in time. We show that the distributions of the number of contributors per project, watchers per project and followers per user show a power-law-like shape. We analyze social ties and repository-mediated collaboration patterns, and we observe a remarkably low level of reciprocity of the social connections. We also measure the activity of each user in terms of authored events and we observe that very active users do not necessarily have a large number of followers. Finally, we provide a geographic characterization of the centers of activity and we investigate how distance influences collaboration.
Resumo:
The aim of this paper is to propose a conceptual framework for studying the knowledge transfer problem within the supply chain. The social network analysis (SNA) is presented as a useful tool to study knowledge networks within supply chain, to visualize knowledge flows and to identify the accumulating knowledge nodes of the networks. © 2011 IEEE.
Resumo:
Innovation is one of the key drivers for gaining competitive advantages in any firms. Understanding knowledge transfer through inter-firm networks and its effects on types of innovation in SMEs is very important in improving SMEs innovation. This study examines relationships between characteristics of inter-firm knowledge transfer networks and types of innovation in SMEs. To achieve this, social network perspective is adopted to understand inter-firm knowledge transfer networks and its impact on innovation by investigating how and to what extend ego network characteristics are affecting types of innovation. Therefore, managers can develop the firms'network according to their strategies and requirements. First, a conceptual model and research hypotheses are proposed to establish the possible relationship between network properties and types of innovation. Three aspects of ego network are identified and adopted for hypotheses development: 1) structural properties which address the potential for resources and the context for the flow of resources, 2) relational properties which reflect the quality of resource flows, and 3) nodal properties which are about quality and variety of resources and capabilities of the ego partners. A questionnaire has been designed based on the hypotheses. Second, semistructured interviews with managers of five SMEs have been carried out, and a thematic qualitative analysis of these interviews has been performed. The interviews helped to revise the questionnaire and provided preliminary evidence to support the hypotheses. Insights from the preliminary investigation also helped to develop research plan for the next stage of this research.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
The aim of this paper is to explore the management of information in an aerospace manufacturer's supply chain by analysing supply chain disruption risks. The social network perspective will be used to examine the flows of information in the supply chain. The examination of information flows will also be explored in terms of push and pull information management. The supply chain risk management (SCRM) strategy is to assess the management of information that allows companies to gather information which will allow them to mitigate that risk before any disruption to the supply chain occurs. There is a shortage of models in analysing the supply chain risk associated with information flows, possibly due to the omission of appropriate modelling techniques in this area (Tang and Nurmaya, 2011). This paper uses an exploratory case study consisting of a multi method qualitative approach using fifteen interviews and four focus groups.