424 resultados para fiber grating sensor
Resumo:
In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendable to 70 nm.
Resumo:
Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.
Resumo:
We demonstrate a novel and simple sensor interrogation scheme for fiber Bragg grating (FBG) based sensing systems. In this scheme, a chirped FBG based Sagnac loop is used as a wavelength-dependent receiver, and a stable and linear readout response is realised. It is a signijkant advantage of this scheme that the sensitivity and the measurement wavelength range can be easily adjhsted by controlling the chirp of the FBG or using an optical delay line in the Sagnac loop.
Resumo:
We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.
Resumo:
An optical liquid-level sensor (LLS) based on a long-period fiber grating (LPG) interferometer is proposed and experimentally demonstrated. Two identical 3-dB LPGs are fabricated to form an in-fiber Mach-Zehnder interferometer, and the fiber portion between two LPGs is exposed to the liquid as the sensing element. The sensitivity and measurement range of the sensors employing different orders of cladding modes are investigated both theoretically and experimentally. The experimental results show good linearity and large measurement range. One of the significant advantages of such a sensing structure is that the measurement level is not limited to the length of the LPG itself. Also, the measurement range and sensitivity of the proposed LLS can be readily tailored for a particular applications.
Resumo:
A low-cost fiber optic sensor system based on multimode fiber and an LED light source is presented. A multimode fiber Bragg grating (MMFBG) element is used as a strain sensor. In a matched grating scheme, a MMFBG similar to the sensing one was used as a reference in the receiving unit. For detection of large wavelength shift we demonstrated the feasibility of MMFBG wavelength detection using a single mode fiber fused coupler edge filter. The high cost normally associated with wavelength interrogators for single mode fiber FBG sensors was overcome by the utilization of a low cost multimode fiber pigtailed LED light source. The multimode fiber sensing system has the potential of maintaining much of the advantages of its single mode FBG sensor system counterparts. The MMFBG sensing schemes could be used for short distance, high sensitivity, high speed, strain, temperature and acoustic sensing applications.
Resumo:
We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG. © 2011 Optical Society of America.
Resumo:
An optical liquid-level sensor (LLS) based on a long-period fiber grating (LPG) interferometer is proposed and experimentally demonstrated. Two identical 3-dB LPGs are fabricated to form an in-fiber Mach-Zehnder interferometer, and the fiber portion between two LPGs is exposed to the liquid as the sensing element. The sensitivity and measurement range of the sensors employing different orders of cladding modes are investigated both theoretically and experimentally. The experimental results show good linearity and large measurement range. One of the significant advantages of such a sensing structure is that the measurement level is not limited to the length of the LPG itself. Also, the measurement range and sensitivity of the proposed LLS can be readily tailored for a particular applications.
Resumo:
We demonstrate a novel and simple sensor interrogation scheme for fiber Bragg grating (FBG) based sensing systems. In this scheme, a chirped FBG based Sagnac loop is used as a wavelength-dependent receiver, and a stable and linear readout response is realised. It is a signijkant advantage of this scheme that the sensitivity and the measurement wavelength range can be easily adjhsted by controlling the chirp of the FBG or using an optical delay line in the Sagnac loop.
Resumo:
We present, for the first time to our knowledge, experimental evidence showing that superimposed blazed fiber Bragg gratings may be fabricated and used to extend the dynamic range of a grating-based spectrometer. Blazed gratings of 4° and 8° were superimposed in germanosilicate fiber by ultraviolet inscription and used in conjunction with a coated charged-coupled device array to interrogate a wavelength-division-multiplexing sensor array. We show that the system can be used to monitor strain and temperature sensors simultaneously with an employable bandwidth which is extendedable to 70 nm.
Resumo:
We report a strong polarization dependent coupling behavior of fiber Bragg gratings with excessively tilted structures up to 81°. This unique property has been utilized to implement a novel twist sensor, showing high torsion sensitivity. The twist induced light coupling interchange between the two birefringence modes makes it possible to interrogate such a sensor using low-cost intensity demodulation technique. © 2006 IEEE.
Resumo:
Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.
Resumo:
In this paper, we describe the recent advances in fiber grating sensing devices and applications with emphasis on multi-parameter measurement and realization of high-sensitivity sensors utilizing novel gratings of the Bragg and long-period structures.
Resumo:
A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.