19 resultados para engine performance


Relevância:

80.00% 80.00%

Publicador:

Resumo:

De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies the characteristics of blends of biodiesel and a new type of SSPO (sewage sludge derived intermediate pyrolysis oil) in various ratios, and evaluates the application of such blends in an unmodified Lister diesel engine. The engine performance and exhaust emissions were investigated and compared to those of diesel and biodiesel. The engine injectors were inspected and tested after the experiment. The SSPO-biodiesel blends were found to have comparable heating values to biodiesel, but relatively high acidity and carbon residue. The diesel engine has operated with a 30/70 SSPO-biodiesel blend and a 50/50 blend for up to 10h and there was no apparent deterioration in operation observed. It is concluded that with 30% SSPO, the engine gives better overall performance and fuel consumption than with 50% SSPO. The exhaust temperatures of 30% SSPO and 50% SSPO are similar, but 30% SSPO gives relatively lower NO emission than 50% SSPO. The CO and smoke emissions are lower with 50% SSPO than with 30% SSPO. The injectors of the engine operated with SSPO blends were found to have heavy carbon deposition and noticeably reduced opening pressure, which may lead to deteriorated engine performance and exhaust emissions in extended operation. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The available literature has been surveyed to determine the parameters affecting fuelling requirements of spark ignition engines and their relation to engine performance and emissions. Theories and experiment relating to two phase and multi-component flows have also been examined and the techniques employed in the measurement of droplet sizes and liquid wall films have been reviewed. Following preliminary steady flow visualisation experiments to examine the trajectories of droplets discharging from the valve port an extensive practical investigation of the spectrum of droplet sizes formed by the break up of the wall film has produced results which have been correlated in terms of the important fuel and airflow parameters. It is concluded that the Sauter mean diameter of droplets formed by the break up of the wall film will vary between 70 and 150 m, depending on the operating conditions of the engine. The spectra of droplet sizes measured show that a significant proportion of the total mass of the wall film breaks into drops which will be too large to burn completely and, by comparison with measurements of unburned hydrocarbon emissions from engines supplied with a homogeneous mixture of air and gaseous hydrocarbons, it is concluded that the droplets from the wall film are likely to increase emissions by 50%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive survey of industrial sites and heat recovery products revealed gaps between equipment that was required and that which was available. Two heat recovery products were developed to fill those gaps: a gas-to-gas modular heat recovery unit; a gas-to-liquid exhaust gas heat exchanger. The former provided an entire heat recovery system in one unit. It was specifically designed to overcome the problems associated with existing component system of large design commitment, extensive installation and incompatibility between parts. The unit was intended to recover heat from multiple waste gas sources and, in particular, from baking ovens. A survey of the baking industry defined typical waste gas temperatures and flow rates, around which the unit was designed. The second unit was designed to recover heat from the exhaust gases of small diesel engines. The developed unit differed from existing designs by having a negligible effect on engine performance. In marketing terms these products are conceptual opposites. The first, a 'product-push' product generated from site and product surveys, required marketing following design. The second, a 'market-pull' product, resulted from a specific user need; this had a captive market and did not require marketing. Here marketing was replaced by commercial aspects including the protection of ideas, contracting, tendering and insurance requirements. These two product development routes are compared and contrasted. As a general conclusion this work suggests that it can be beneficial for small companies (as was the sponsor of this project) to undertake projects of the market-pull type. Generally they have a higher probability of success and are less capital intensive than their product-push counterparts. Development revealed shortcomings in three other fields: British Standards governing heat exchangers; financial assessment of energy saving schemes; degree day procedure of calculating energy savings. Methods are proposed to overcome these shortcomings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the thesis was to analyse several process configurations for the production of electricity from biomass. Process simulation models using AspenPlus aimed at calculating the industrial performance of power plant concepts were built, tested, and used for analysis. The criteria used in analysis were performance and cost. All of the advanced systems appear to have higher efficiencies than the commercial reference, the Rankine cycle. However, advanced systems typically have a higher cost of electricity (COE) than the Rankine power plant. High efficiencies do not reduce fuel costs enough to compensate for the high capital costs of advanced concepts. The successful reduction of capital costs would appear to be the key to the introduction of the new systems. Capital costs account for a considerable, often dominant, part of the cost of electricity in these concepts. All of the systems have higher specific investment costs than the conventional industrial alternative, i.e. the Rankine power plant; Combined beat and power production (CUP) is currently the only industrial area of application in which bio-power costs can be considerably reduced to make them competitive. Based on the results of this work, AsperiPlus is an appropriate simulation platform. How-ever, the usefulness of the models could be improved if a number of unit operations were modelled in greater detail. The dryer, gasifier, fast pyrolysis, gas engine and gas turbine models could be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presents a prototype modelling methodology that provides a generic approach to the creation of quantitative models of the relationships between a working environment, the direct workers and their subsequent performance. Once created for an organisation, such models can provide a prediction of how the behaviour of their workers will alter in response to changes in their working environment. The goal of this work is to improve the decision processes used in the design of the working environment. Through improving such processes, companies will gain better performance from their direct workers, and so improve business competitiveness. This paper first presents the need to model the behaviour of direct workers in manufacturing environments. To begin to address this need, a simplistic modelling framework is developed, and then this is expanded to provide a detailed modelling methodology. There then follows a description of an industrial evaluation of this methodology at Ford Motor Company. This modelling methodology has been assessed in this case study and has been found to be valid in this case. There are many challenges that this theme of research needs to address. The work described in this paper has made an important first step in this area, having gone some way to establishing a generic methodology and illustrating its potential value. Our future work will build on this foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents design and construction of a tri-generation system (thermal efficiency, 63%), powered by neat nonedible plant oils (jatropha, pongamia and jojoba oil or standard diesel fuel), besides studies on plant performance and economics. Proposed plant consumes fuel (3 l/h) and produce ice (40 kg/h) by means of an adsorption refrigerator powered from the engine waste jacket water heat. Potential savings in green house gas (GHG) emissions of trigeneration system in comparison to cogeneration (or single generation) has also been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.