19 resultados para energy saving innovations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greenhouse cultivation is an energy intensive process therefore it is worthwhile to introduce energy saving measures and alternative energy sources. Here we show that there is scope for energy saving in fan ventilated greenhouses. Measurements of electricity usage as a function of fan speed have been performed for two models of 1.25 m diameter greenhouse fans and compared to theoretical values. Reducing the speed can cut the energy usage per volume of air moved by more than 70%. To minimize the capital cost of low-speed operation, a cooled greenhouse has been built in which the fan speed responds to sunlight such that full speed is reached only around noon. The energy saving is about 40% compared to constant speed operation. Direct operation of fans from solar-photovoltaic modules is also viable as shown from experiments with a fan driven by a brushless DC motor. On comparing the Net Present Value costs of the different systems over a 10 year amortization period (with and without a carbon tax to represent environmental costs) we find that sunlight-controlled system saves money under all assumptions about taxation and discount rates. The solar-powered system, however, is only profitable for very low discount rates, due to the high initial capital costs. Nonetheless this system could be of interest for its reliability in developing countries where mains electricity is intermittent. We recommend that greenhouse fan manufacturers improve the availability of energy-saving designs such as those described here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

World and UK energy resources and use are reviewed and the role of energy conservation in energy policy identified. In considering various energy conservation measures, a distinction is made between energy intensive and non-intensive industries and also between direct and indirect uses of energy. Particular attention is given to the non-intensive user of energy. Energy use on one such industrial site has been studied to determine the most effective energy saving measures in the short term. Here it is estimated that over 65% of energy is consumed for indirect purposes, mainly for heating and lighting buildings. Emphasis is placed on energy auditing techniques and those energy saving measures requiring greater technical, economic and organisational resources to secure their implementation. Energy auditing techniques include the use of aerial thermography and snow formation surveys to detect heat losses. Qualitative and quantitative interpretations are carried out, but restricted mainly to evaluating building roof heat losses. From the energy auditing exercise, it is confirmed that the intermittent heating of buildings is the largest and most cost effective fuel saving measure. This was implemented on the site and a heat monitoring programme established to verify results. Industrial combined heat and power generation is investigated. A proposal for the site demonstrates that there are several obstacles to its successful implementation. By adopting an alternative financial rationale, a way of overcoming these obstacles is suggested. A useful by-product of the study is the classification of industrial sites according to the nature of industrial energy demand patterns. Finally, energy saving measures implemented on the site are quantlfied using comparative verification methods. Overall fuel savings of 13% are indicated. Cumulative savings in heating fuel amount to 26% over four years although heated area increased by approximately 25%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A low energy route for the removal of Pluronic P123 surfactant template during the synthesis of SBA-15 mesoporous silicas is explored. The conventional reflux of the hybrid inorganic-organic intermediate formed during co-condensation routes to Pr-SOH-SBA-15 is slow, utilises large solvent volumes, and requires 24 h to remove ∼90% of the organic template. In contrast, room temperature ultrasonication in a small methanol volume achieves the same degree of template extraction in only 5 min, with a 99.9% energy saving and 90% solvent reduction, without compromising the textural, acidic or catalytic properties of the resultant Pr-SOH-SBA-15. © 2014 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, the more important parameters of the heat pump system and of solar assisted heat pump systems were analysed in a quantitative way. Ideal and real Rankine cycles applied to the heat pump, with and without subcooling and superheating were studied using practical recommended values for their thermodynamics parameters. Comparative characteristics of refrigerants here analysed looking for their applicability in heat pumps for domestic heating and their effect in the performance of the system. Curves for the variation of the coefficient of performance as a function of condensing and evaporating temperatures were prepared for R12. Air, water and earth as low-grade heat sources and basic heat pump design factors for integrated heat pumps and thermal stores and for solar assisted heat pump-series, parallel and dual-systems were studied. The analysis of the relative performance of these systems demonstrated that the dual system presents advantages in domestic applications. An account of energy requirements for space and hater heating in the domestic sector in the O.K. is presented. The expected primary energy savings by using heat pumps to provide for the heating demand of the domestic sector was found to be of the order of 7%. The availability of solar energy in the U.K. climatic conditions and the characteristics of the solar radiation here studied. Tables and graphical representations in order to calculate the incident solar radiation over a tilted roof were prepared and are given in this study in section IV. In order to analyse and calculate the heating load for the system, new mathematical and graphical relations were developed in section V. A domestic space and water heating system is described and studied. It comprises three main components: a solar radiation absorber, the normal roof of a house, a split heat pump and a thermal store. A mathematical study of the heat exchange characteristics in the roof structure was done. This permits to evaluate the energy collected by the roof acting as a radiation absorber and its efficiency. An indication of the relative contributions from the three low-grade sources: ambient air, solar boost and heat loss from the house to the roof space during operation is given in section VI, together with the average seasonal performance and the energy saving for a prototype system tested at the University of Aston. The seasonal performance as found to be 2.6 and the energy savings by using the system studied 61%. A new store configuration to reduce wasted heat losses is also discussed in section VI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive survey of industrial sites and heat recovery products revealed gaps between equipment that was required and that which was available. Two heat recovery products were developed to fill those gaps: a gas-to-gas modular heat recovery unit; a gas-to-liquid exhaust gas heat exchanger. The former provided an entire heat recovery system in one unit. It was specifically designed to overcome the problems associated with existing component system of large design commitment, extensive installation and incompatibility between parts. The unit was intended to recover heat from multiple waste gas sources and, in particular, from baking ovens. A survey of the baking industry defined typical waste gas temperatures and flow rates, around which the unit was designed. The second unit was designed to recover heat from the exhaust gases of small diesel engines. The developed unit differed from existing designs by having a negligible effect on engine performance. In marketing terms these products are conceptual opposites. The first, a 'product-push' product generated from site and product surveys, required marketing following design. The second, a 'market-pull' product, resulted from a specific user need; this had a captive market and did not require marketing. Here marketing was replaced by commercial aspects including the protection of ideas, contracting, tendering and insurance requirements. These two product development routes are compared and contrasted. As a general conclusion this work suggests that it can be beneficial for small companies (as was the sponsor of this project) to undertake projects of the market-pull type. Generally they have a higher probability of success and are less capital intensive than their product-push counterparts. Development revealed shortcomings in three other fields: British Standards governing heat exchangers; financial assessment of energy saving schemes; degree day procedure of calculating energy savings. Methods are proposed to overcome these shortcomings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems. © 2014 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this thesis is to evaluate the economic and socio-economic viability of energy crops as raw material for bioenergy schemes at the local level. The case examined is Greece, a southern Mediterranean country. Based on the current state, on foreseen trends and on the information presented in the literature review (conducted at the beginning of the study), the main goal was defined as follows: To examine the evidence supporting a strong role for dedicated energy crops local bioenergy developments in Greece, a sector that is forecasted to be increasingly important in the short to medium term.' Two perennial energy crops, cardoon (Cynara cardunculus L.) and giant reed (Arundo donax L.) were evaluated. The thesis analysed their possible introduction in the agricultural system of Rhodope, northern Greece, as alternative land use, through comparative financial appraisal with the main conventional crops. Based on the output of this comparative analysis, the breakeven for the two selected energy crops was defined along with a sensitivity analysis for the risk of the potential implementation. Following, the author performed an economic and socio-economic evaluation of a district heating system fuelled with energy crops in the selected region. Finally, the author, acknowledging that bioenergy deployment should be studied in the context of innovations proceeded in examining the different perceptions of the key groups involved, farmers and potential end users. Results indicated that biomass exploitation for energy purposes is more likely to be accepted when it is seen clearly as one strand in a national energy, environmental and agricultural policy which embraces several sources of renewable energy, and which also encourages energy efficiency and conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have witnessed an unprecedented increase in the price of energy available to industry in the United Kingdom and worldwide. The steel industry, as a major consumer of energy delivered in U.K. (8% of national total and nearly 25% of industrial total) and whose energy costs currently form some 28% of the total manufacturing cost, is very much aware of the need to conserve energy. Because of the complexities of steelmaking processes it is imperative that a full understanding of each process and its interlinking role in an integrated steelworks is understood. An analysis of energy distribution shows that as much as 70% of heat input is dissipated to the environment in a variety of forms. Of these, waste gases offer the best potential for energy conservation. The study identifies areas for and discusses novel methods of energy conservation in each process. Application of these schemes in BSC works is developed and their economic incentives highlighted. A major part of this thesis describes design, development and testing of a novel ceramic rotary regenerator for heat recovery from high temperature waste gases, where no such system is available. The regenerator is a compact, efficient heat exchanger. Application of such a system to a reheating furnace provides a fuel saving of up to 40%. A mathematical model developed is verified on the pilot plant. The results obtained confirm the success of the concept and material selection and outlines the work needed to develop an industrial unit. Last, but not least, the key position of an energy manager in an energy conservation programme is identified and a new Energy Management Model for the BSC is developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New techniques in manufacturing, popularly referred to as mechanization and automation, have been a preoccupation of social and economic theorists since the industrial revolution. A selection of relevant literature is reviewed, including the neoclassical economic treatment of technical change. This incorporates alterations to the mathematical production function and an associated increase in the efficiency with which the factors of production are converted into output. Other work emphasises the role of research and development and the process of diffusion, whereby new production techniques are propagated throughout industry. Some sociological writings attach importance to the type of production technology and its effect on the organisational structure and social relations within the factory. Nine detailed case studies are undertaken of examples of industrial innovation in the rubber, automobile, vehicle components, confectionery and clothing industries. The old and new techniques are compared for a range of variables, including capital equipment, labour employed, raw materials used, space requirements and energy consumption, which in most cases exhibit significant change with the innovation. The rate of output, labour productivity, product quality, maintenance requirements and other aspects are also examined. The process by which the change in production method was achieved is documented, including the development of new equipment and the strategy of its introduction into the factory, where appropriate. The firm, its environment, and the attitude of different sectors of the workforce are all seen to play a part in determining the motives for and consequences which flow from the innovations. The traditional association of technical progress with its labour-saving aspect, though an accurate enough description of the cases investigated, is clearly seen to afford an inadequate perspective for the proper understanding of this complex phenomenon, which also induces change in a wide range of other social, economic and technical variables.