85 resultados para contrast thresholds


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contrast sensitivity is better with two eyes than one. The standard view is that thresholds are about 1.4 (v2) times better with two eyes, and that this arises from monocular responses that, near threshold, are proportional to the square of contrast, followed by binocular summation of the two monocular signals. However, estimates of the threshold ratio in the literature vary from about 1.2 to 1.9, and many early studies had methodological weaknesses. We collected extensive new data, and applied a general model of binocular summation to interpret the threshold ratio. We used horizontal gratings (0.25 - 4 cycles deg-1) flickering sinusoidally (1 - 16 Hz), presented to one or both eyes through frame-alternating ferroelectric goggles with negligible cross-talk, and used a 2AFC staircase method to estimate contrast thresholds and psychometric slopes. Four naive observers completed 20 000 trials each, and their mean threshold ratios were 1.63, 1.69, 1.71, 1.81 - grand mean 1.71 - well above the classical v2. Mean ratios tended to be slightly lower (~1.60) at low spatial or high temporal frequencies. We modelled contrast detection very simply by assuming a single binocular mechanism whose response is proportional to (Lm + Rm) p, followed by fixed additive noise, where L,R are contrasts in the left and right eyes, and m, p are constants. Contrast-gain-control effects were assumed to be negligible near threshold. On this model the threshold ratio is 2(?1/m), implying that m=1.3 on average, while the Weibull psychometric slope (median 3.28) equals 1.247mp, yielding p=2.0. Together, the model and data suggest that, at low contrasts across a wide spatiotemporal frequency range, monocular pathways are nearly linear in their contrast response (m close to 1), while a strongly accelerating nonlinearity (p=2, a 'soft threshold') occurs after binocular summation. [Supported by EPSRC project grant GR/S74515/01]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The slope of the two-interval, forced-choice psychometric function (e.g. the Weibull parameter, ß) provides valuable information about the relationship between contrast sensitivity and signal strength. However, little is known about how or whether ß varies with stimulus parameters such as spatiotemporal frequency and stimulus size and shape. A second unresolved issue concerns the best way to estimate the slope of the psychometric function. For example, if an observer is non-stationary (e.g. their threshold drifts between experimental sessions), ß will be underestimated if curve fitting is performed after collapsing the data across experimental sessions. We measured psychometric functions for 2 experienced observers for 14 different spatiotemporal configurations of pulsed or flickering grating patches and bars on each of 8 days. We found ß ˜ 3 to be fairly constant across almost all conditions, consistent with a fixed nonlinear contrast transducer and/or a constant level of intrinsic stimulus uncertainty (e.g. a square law transducer and a low level of intrinsic uncertainty). Our analysis showed that estimating a single ß from results averaged over several experimental sessions was slightly more accurate than averaging multiple estimates from several experimental sessions. However, the small levels of non-stationarity (SD ˜ 0.8 dB) meant that the difference between the estimates was, in practice, negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of early spatial vision owes much to contrast masking and summation paradigms. In particular, the deep region of facilitation at low mask contrasts is thought to indicate a rapidly accelerating contrast transducer (eg a square-law or greater). In experiment 1, we tapped an early stage of this process by measuring monocular and binocular thresholds for patches of 1 cycle deg-1 sine-wave grating. Threshold ratios were around 1.7, implying a nearly linear transducer with an exponent around 1.3. With this form of transducer, two previous models (Legge, 1984 Vision Research 24 385 - 394; Meese et al, 2004 Perception 33 Supplement, 41) failed to fit the monocular, binocular, and dichoptic masking functions measured in experiment 2. However, a new model with two-stages of divisive gain control fits the data very well. Stage 1 incorporates nearly linear monocular transducers (to account for the high level of binocular summation and slight dichoptic facilitation), and monocular and interocular suppression (to fit the profound 42 Oral presentations: Spatial vision Thursday dichoptic masking). Stage 2 incorporates steeply accelerating transduction (to fit the deep regions of monocular and binocular facilitation), and binocular summation and suppression (to fit the monocular and binocular masking). With all model parameters fixed from the discrimination thresholds, we examined the slopes of the psychometric functions. The monocular and binocular slopes were steep (Weibull ߘ3-4) at very low mask contrasts and shallow (ߘ1.2) at all higher contrasts, as predicted by all three models. The dichoptic slopes were steep (ߘ3-4) at very low contrasts, and very steep (ß>5.5) at high contrasts (confirming Meese et al, loco cit.). A crucial new result was that intermediate dichoptic mask contrasts produced shallow slopes (ߘ2). Only the two-stage model predicted the observed pattern of slope variation, so providing good empirical support for a two-stage process of binocular contrast transduction. [Supported by EPSRC GR/S74515/01]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In experiments reported elsewhere at this conference, we have revealed two striking results concerning binocular interactions in a masking paradigm. First, at low mask contrasts, a dichoptic masking grating produces a small facilitatory effect on the detection of a similar test grating. Second, the psychometric slope for dichoptic masking starts high (Weibull ß~4) at detection threshold, becomes low (ß~1.2) in the facilitatory region, and then unusually steep at high mask contrasts (ß~5.5). Neither of these results is consistent with Legge's (1984 Vision Research 24 385 - 394) model of binocular summation, but they are predicted by a two-stage gain control model in which interocular suppression precedes binocular summation. Here, we pose a further challenge for this model by using a 'twin-mask' paradigm (cf Foley, 1994 Journal of the Optical Society of America A 11 1710 - 1719). In 2AFC experiments, observers detected a patch of grating (1 cycle deg-1, 200 ms) presented to one eye in the presence of a pedestal in the same eye and a spatially identical mask in the other eye. The pedestal and mask contrasts varied independently, producing a two-dimensional masking space in which the orthogonal axes (10X10 contrasts) represent conventional dichoptic and monocular masking. The resulting surface (100 thresholds) confirmed and extended the observations above, and fixed the six parameters in the model, which fitted the data well. With no adjustment of parameters, the model described performance in a further experiment where mask and test were presented to both eyes. Moreover, in both model and data, binocular summation was greater than a factor of v2 at detection threshold. We conclude that this two-stage nonlinear model, with interocular suppression, gives a good account of early binocular processes in the perception of contrast. [Supported by EPSRC Grant Reference: GR/S74515/01]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of fixation points (FPs) in visual psychophysics is common practice, though the costs and benefits of different fixation regimens have not been compared. Here we investigate the influence of several different types of FP configurations on the contrast detection of patches of sine-wave gratings. We find that for small targets (1°), the addition of a superimposed central FP can increase thresholds by a factor of 1.3 (2.5 dB) in comparison with no FP, and a factor of 1.5 (3.6 dB) in comparison with FPs that surround the target. These results are consistent with (i) a suppressive influence on the central region of the target from a central FP, and (ii) facilitatory influences from surrounding FPs. Our analysis of the slope of the psychometric function suggests that the facilitatory influence is not due to reduction of uncertainty. Plausible candidate causes for the facilitation are: (i) sensory interactions, (ii) aids to ocular accommodation and convergence, (iii) a reduction in eye-movements and (iv) more accurate placement of the observer’s window of attention. Masking by a central FP is not found for the suprathreshold task of contrast discrimination, suggesting that the masking effects of pedestal and FP do not combine linearly. This means that estimates of the level of masking produced by a contrast pedestal can depend on the details of the fixation point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is very well known that contrast detection thresholds improve with the size of a grating-type stimulus, but it is thought that the benefit of size is abolished for contrast discriminations well above threshold (e.g., Legge, G. E., & Foley, J. M. (1980)]. Here we challenge the generality of this view. We performed contrast detection and contrast discrimination for circular patches of sine wave grating as a function of stimulus size. We confirm that sensitivity improves with approximately the fourth-root of stimulus area at detection threshold (a log-log slope of -0.25) but find individual differences (IDs) for the suprathreshold discrimination task. For several observers, performance was largely unaffected by area, but for others performance first improved (by as much as a log-log slope of -0.5) and then reached a plateau. We replicated these different results several times on the same observers. All of these results were described in the context of a recent gain control model of area summation [Meese, T. S. (2004)], extended to accommodate the multiple stimulus sizes used here. In this model, (i) excitation increased with the fourth-root of stimulus area for all observers, and (ii) IDs in the discrimination data were described by IDs in the relation between suppression and area. This means that empirical summation in the contrast discrimination task can be attributed to growth in suppression with stimulus size that does not keep pace with the growth in excitation. © 2005 ARVO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical studies of area summation measure contrast detection thresholds as a function of grating diameter. Unfortunately, (i) this approach is compromised by retinal inhomogeneity and (ii) it potentially confounds summation of signal with summation of internal noise. The Swiss cheese stimulus of T. S. Meese and R. J. Summers (2007) and the closely related Battenberg stimulus of T. S. Meese (2010) were designed to avoid these problems by keeping target diameter constant and modulating interdigitated checks of first-order carrier contrast within the stimulus region. This approach has revealed a contrast integration process with greater potency than the classical model of spatial probability summation. Here, we used Swiss cheese stimuli to investigate the spatial limits of contrast integration over a range of carrier frequencies (1–16 c/deg) and raised plaid modulator frequencies (0.25–32 cycles/check). Subthreshold summation for interdigitated carrier pairs remained strong (~4 to 6 dB) up to 4 to 8 cycles/check. Our computational analysis of these results implied linear signal combination (following square-law transduction) over either (i) 12 carrier cycles or more or (ii) 1.27 deg or more. Our model has three stages of summation: short-range summation within linear receptive fields, medium-range integration to compute contrast energy for multiple patches of the image, and long-range pooling of the contrast integrators by probability summation. Our analysis legitimizes the inclusion of widespread integration of signal (and noise) within hierarchical image processing models. It also confirms the individual differences in the spatial extent of integration that emerge from our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision must analyze the retinal image over both small and large areas to represent fine-scale spatial details and extensive textures. The long-range neuronal convergence that this implies might lead us to expect that contrast sensitivity should improve markedly with the contrast area of the image. But this is at odds with the orthodox view that contrast sensitivity is determined merely by probability summation over local independent detectors. To address this puzzle, I aimed to assess the summation of luminance contrast without the confounding influence of area-dependent internal noise. I measured contrast detection thresholds for novel Battenberg stimuli that had identical overall dimensions (to clamp the aggregation of noise) but were constructed from either dense or sparse arrays of micro-patterns. The results unveiled a three-stage visual hierarchy of contrast summation involving (i) spatial filtering, (ii) long-range summation of coherent textures, and (iii) pooling across orthogonal textures. Linear summation over local energy detectors was spatially extensive (as much as 16 cycles) at Stage 2, but the resulting model is also consistent with earlier classical results of contrast summation (J. G. Robson & N. Graham, 1981), where co-aggregation of internal noise has obscured these long-range interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combination of signals from the two eyes is the gateway to stereo vision. To gain insight into binocular signal processing, we studied binocular summation for luminance-modulated gratings (L or LM) and contrast-modulated gratings (CM). We measured 2AFC detection thresholds for a signal grating (0.75 c/deg, 216msec) shown to one eye, both eyes, or both eyes out-of-phase. For LM and CM, the carrier noise was in both eyes, even when the signal was monocular. Mean binocular thresholds for luminance gratings (L) were 5.4dB better than monocular thresholds - close to perfect linear summation (6dB). For LM and CM the binocular advantage was again 5-6dB, even when the carrier noise was uncorrelated, anti-correlated, or at orthogonal orientations in the two eyes. Binocular combination for CM probably arises from summation of envelope responses, and not from summation of these conflicting carrier patterns. Antiphase signals produced no binocular advantage, but thresholds were about 1-3dB higher than monocular ones. This is not consistent with simple linear summation, which should give complete cancellation and unmeasurably high thresholds. We propose a three-channel model in which noisy monocular responses to the envelope are binocularly combined in a contrast-weighted sum, but also remain separately available to perception via a max operator. Vision selects the largest of the three responses. With in-phase gratings the binocular channel dominates, but antiphase gratings cancel in the binocular channel and the monocular channels mediate detection. The small antiphase disadvantage might be explained by a subtle influence of background responses on binocular and monocular detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replica method, developed in statistical physics, is employed in conjunction with Gallager's methodology to accurately evaluate zero error noise thresholds for Gallager code ensembles. Our approach generally provides more optimistic evaluations than those reported in the information theory literature for sparse matrices; the difference vanishes as the parity check matrix becomes dense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocular summation. Here we extend that work by: (i) exploring the two-dimensional stimulus space (defined by left- and right-eye contrasts) more thoroughly, and (ii) performing contrast discrimination and contrast matching tasks for the same stimuli. Twenty-five base-stimuli made from 1 c/deg patches of horizontal grating, were defined by the factorial combination of 5 contrasts for the left eye (0.3-32%) with five contrasts for the right eye (0.3-32%). Other than in contrast, the gratings in the two eyes were identical. In a 2IFC discrimination task, the base-stimuli were masks (pedestals), where the contrast increment was presented to one eye only. In a matching task, the base-stimuli were standards to which observers matched the contrast of either a monocular or binocular test grating. In the model, discrimination depends on the local gradient of the observer's internal contrast-response function, while matching equates the magnitude (rather than gradient) of response to the test and standard. With all model parameters fixed by previous work, the two-stage model successfully predicted both the discrimination and the matching data and was much more successful than linear or quadratic binocular summation models. These results show that performance measures and perception (contrast discrimination and contrast matching) can be understood in the same theoretical framework for binocular contrast vision. © 2007 VSP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Strabismic amblyopia is typically associated with several visual deficits, including loss of contrast sensitivity in the amblyopic eye and abnormal binocular vision. Binocular summation ratios (BSRs) are usually assessed by comparing contrast sensitivity for binocular stimuli (sens BIN) with that measured in the good eye alone (sensGOOD), giving BSR = sensBIN/sensGOOD. This calculation provides an operational index of clinical binocular function, but does not assess whether neuronal mechanisms for binocular summation of contrast remain intact. This study was conducted to investigate this question. METHODS. Horizontal sine-wave gratings were used as stimuli (3 or 9 cyc/deg; 200 ms), and the conventional method of assessment (above) was compared with one in which the contrast in the amblyopic eye was adjusted (normalized) to equate monocular sensitivities. RESULTS. In nine strabismic amblyopes (mean age, 32 years), the results confirmed that the BSR was close to unity when the conventional method was used (little or no binocular advantage), but increased to approximately √2 or higher when the normalization method was used. The results were similar to those for normal control subjects (n = 3; mean age, 38 years) and were consistent with the physiological summation of contrast between the eyes. When the normal observers performed the experiments with a neutral-density (ND) filter in front of one eye, their performance was similar to that of the amblyopes in both methods of assessment. CONCLUSIONS. The results indicate that strabismic amblyopes have mechanisms for binocular summation of contrast and that the amblyopic deficits of binocularity can be simulated with an ND filter. The implications of these results for best clinical practice are discussed. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human visual system combines contrast information from the two eyes to produce a single cyclopean representation of the external world. This task requires both summation of congruent images and inhibition of incongruent images across the eyes. These processes were explored psychophysically using narrowband sinusoidal grating stimuli. Initial experiments focussed on binocular interactions within a single detecting mechanism, using contrast discrimination and contrast matching tasks. Consistent with previous findings, dichoptic presentation produced greater masking than monocular or binocular presentation. Four computational models were compared, two of which performed well on all data sets. Suppression between mechanisms was then investigated, using orthogonal and oblique stimuli. Two distinct suppressive pathways were identified, corresponding to monocular and dichoptic presentation. Both pathways impact prior to binocular summation of signals, and differ in their strengths, tuning, and response to adaptation, consistent with recent single-cell findings in cat. Strikingly, the magnitude of dichoptic masking was found to be spatiotemporally scale invariant, whereas monocular masking was dependent on stimulus speed. Interocular suppression was further explored using a novel manipulation, whereby stimuli were presented in dichoptic antiphase. Consistent with the predictions of a computational model, this produced weaker masking than in-phase presentation. This allowed the bandwidths of suppression to be measured without the complicating factor of additive combination of mask and test. Finally, contrast vision in strabismic amblyopia was investigated. Although amblyopes are generally believed to have impaired binocular vision, binocular summation was shown to be intact when stimuli were normalized for interocular sensitivity differences. An alternative account of amblyopia was developed, in which signals in the affected eye are subject to attenuation and additive noise prior to binocular combination.