37 resultados para conditions of contact
Resumo:
The work utilising a new material for contact lenses has fallen into three parts: Physioloeical considerations: Since the cornea is devoid of blood vessels, its oxygen is derived from the atmosphere. Early hydrophilic gel contact lenses interrupted the flow of oxygen and corneal insult resulted. Three techniques of fenestration were tried to overcome this problem. High speed drilling with 0.1 mm diameter twist drills. was found to be mechanically successful, but under clinical conditions mucous blockage of the fenestrations occurred. An investigation was made into the amount of oxygen arriving at the corneal interface; related to gel lens thickness. The results indicated an improvement in corneal oxygen as lens thickness was reduced. The mechanism is thought to be a form of mechanical pump. A series of clinical studies con:firmed the experimental work; the use of thin lenses removing the symptoms of corneal hypoxia. Design: The parameters of lens back curvature. lens thickness and lens diameter have been isolated and related to three criteria of vision (a) Visual acuity. (b) Visual stability and (c) Induced astigmatism. From the results achieved a revised and basically successful design of lens has been developed. Comparative study: The developed form of lens was compared with traditional lenses in a controlled survey. Twelve factors were assessed over a twenty week period of wear using a total of eighty four patients. The results of this study indicate that whilst the expected changes were noted with the traditional lens wearers, gel lens wearers showed no discernible change in any of the factors measured. ldth the exception of' one parameter. In addition to a description of' the completed l'iork. further investigations are ·sug~ested l'lhich. it is hoped. l'iould further improve the optical performance of gel lenses.
Resumo:
Purpose: To examine the potential barrier and lubricating effects of modern daily disposable contact lenses (DD) against airborne antigens. Methods: Ten patients with skin prick and ocular conjunctival provocation confirmed allergic sensitivity to grass pollen were recruited (average age 27.4±7.7 years). Each had their ocular symptoms (on a 0 none to 5 extreme scale) and appearance of bulbar and limbal conjunctival redness, palpebral conjunctival redness and roughness, and corneal and conjunctival fluorescein staining (CCLRU scale) graded before and five minutes after exposure to 400 grains grass pollen/m3 for 2 minutes in a purpose-designed exposure chamber to simulate the conditions of a ‘very high’ pollen-count day. This was repeated on three occasions separated by >72 hours wearing etafilcon A (sDD), nelfilcon A with enhanced lubricating agents (ELDD) and no contact lenses in random order out of the pollen season. Each sign and symptom was compared to baseline for each condition. The duration of the symptoms was also recorded. www.clinicaltrials.gov NCT01125540 Results: Only symptoms of burning and stinging were significantly reduced in severity by ELDD (Chi-Sq=7.6, p=0.02), but overall symptoms were significantly reduced in duration (F=3.60, p=0.05). Bulbar hyperaemia, corneal and conjunctival staining, and palpebral conjunctival roughness were significantly reduced by DD wear (p<0.01), with limbal and palpebral conjunctival redness further reduced in ELDD (p<0.05). Conclusion: Daily disposable contact lenses offer a barrier to airborne antigen which is enhanced by modern lenses with enhanced lubricating agents.
Resumo:
The effect of stainless steel, glass, zirconium and titanium enamel surfaces on the thermal and photooxidative toughening mechanism of dehydrated castor oil films deposited on these surfaces was investigated using different analytical and spectroscopic methods. The conjugated and non-conjugated double bonds were identified and quantified using both Raman spectroscopy and 1D and 2D NMR spectroscopy. The disappearance of the double bonds in thermally oxidised oil-on-surface films was shown to be concomitant with the formation of hydroperoxides (determined by iodometric titration). The type of the surface had a major effect on the rate of thermal oxidation of the oil, but all of the surfaces examined had resulted in a significantly higher rate of oxidation compared to that of the neat oil. The highest effect was exhibited by the stainless steel surface followed by zirconium enamel, titanium enamel and glass. The rate of thermal oxidation of the oil-on-steel surface (at 100 °C, based on peroxide values) was more than five times faster than that of oil-on-glass and more than 21 times faster than the neat oil when compared under similar thermal oxidative conditions. The rate of photooxidation at 60 °C of oil-on-steel films was found to be about one and half times faster than their rate of thermal oxidation at the same temperature. Results from absorbance reflectance infrared microscopy with line scans taken across the depth of thermally oxidised oil-on-steel films suggest that the thermal oxidative toughening mechanism of the oil occurs by two different reaction pathways with the film outermost layers, i.e. furthest away from the steel surface, oxidising through a traditional free radical oxidation process involving the formation of various oxygenated products formed from the decomposition of allylic hydroperoxides, whereas, in the deeper layers closer to the steel surface, crosslinking reactions predominate.
Resumo:
I was recently part of a small committee looking at higher qualifications in contact lens practice and the discussion turned to future technologies. There was mention of different materials and different applications of contact lenses. Drug delivery with contact lenses was discussed as this has been talked about in the literature for a while. The first paper I could find that talked about using contact lenses for drug delivery dates back over 40 years. There was a review paper in CLAE in 2008 that looked specifically at this too [1]. However, where are these products? Why are we not seeing them in the market place? Maybe the technology is not quite there yet, or maybe patents are prohibiting usage or maybe the market is not big enough to develop such products? We do have lenses on the market with slow release of lubricating agents but not therapeutic agents used for ocular or systemic conditions. Contact lenses with pathogen detectors may be part of our contact lens armoury of the future and again we can already see papers in the literature that have trialled this technology for glucose monitoring in diabetics or lactate concentration in the tear film. Future contact lenses may incorporate better optics based on aberration control and we see this starting to emerge with aspheric designs designed to minimise spherical aberration. Irregular corneas can be fitted with topography based designs and again this technology exists and is being used by some manufacturers in their designs already. Moreover, the topography based fitting of irregular corneas is certainly something we see a lot of today and CLAE has seen many articles related to this over the last decade or so. What about further into the future? Well one interesting area must the 3-dimensional contact lenses, or contact lenses with electronic devices built in that simulate a display screen. A little like the virtual display spectacles that are already sold by electronics companies. It does not take much of a stretch of the imagination to see a large electronic company taking this technology on and making it viable. Will we see people on the train watching movies on these electronic virtual reality contact lenses? I think we will, but when is harder to know.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.
Resumo:
The primary objective of this research has been to determine the potential of fluorescence spectroscopy as a method for analysis of surface deposition on contact lenses. In order to achieve this it was first necessary to ascertain whether fluorescence analysis would be able to detect and distinguish between protein and lipid deposited on a lens surface. In conjunction with this it was important to determine the specific excitation wavelengths at which these deposited species were detected with the greatest sensitivity. Experimental observations showed that an excitation wavelength of 360nm would detect lipid deposited on a lens surface, and an excitation wavelength of 280nm would detect and distinguish between protein and lipid deposited on a contact lens. It was also very important to determine whether clean unspoilt lenses showed significant levels of fluorescence themselves. Fluorescence spectra recorded from a variety of unworn contact lenses at excitation wavelengths of 360nm and 280nm indicated that most contact lens materials do not fluoresce themselves to any great extent. Following these initial experiments various clinically and laboratory based studies were performed using fluorescence spectroscopy as a method of analysing contact lens deposition levels. The clinically based studies enabled analysis of contact lenses with known wear backgrounds to be rapidly and individually analysed following discontinuation of wear. Deposition levels in the early stages of lens wear were determined for various lens materials. The effect of surfactant cleaning on deposition levels was also investigated. The laboratory based studies involved comparing some of the in vivo results with those of identical lenses that had been spoilt using an in vitro method. Finally, an examination of lysosyme migration into and out of stored ionic high water contact lenses was made.
Resumo:
The effects of antioxidants and stabilizers on the oxidative degradation of polyolefins (low density polyethylene [LDPE] and polypropylene [PPJ have been studied after subjecting to prior high temperature processing treatments. The changes in the both chemical and physical properties of unstabilized polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. Subsequent thermal and photo-oxidation showed very similar characteristics and the chromophore primarily responsible for:both thermo and photooxidative degradation of unstabilized polymers was found to be hydroperoxide formed during processing. Removal of hydroperoxide by heat treatment in an inert atmosphere although increasing ketonic carbonyl concentration, markedly decreased the rate of photo-oxidation, introducing an induction period similar to that of an unprocessed sample. It was concluded that hydroperoxides are the most important initiators in normally processed polymers during the early stages of photo-oxidation. Antioxidants such as metal dithiocarbamates which act by destroying peroxides into non-radica1 products were found to be efficient melt stabilizers for polyolefins and effective UV stabilizers during the initial photo-oxidation stage, whilst a phenolic antioxidant, n-octadecyl-3-(3',5'-di-terbutyl 4'hydroxypheny1) propionate (Irganox 1076) retarded photo-oxidation rate in the later stages. A typical 'UV absorber' 2-hydroxy-4-octyloxy-benzophenone (HOBP) has a minor thermal antioxidant action but retarded photo-oxidation at all stages. A substituated piperidine derivative, Bis [2.2.6.6-tetramethylpiperidlnyl-4] sebacate (Tinuvin 770) behaved as an pro-oxidant during thermal oxidation of polyolefins but was an effective stabilizer against UV light. The UV absorber, HOBP synergised effectively with both peroxide decomposing antioxidants (metal dithiocarbamates) and a chain-breaking antioxidant (Irganox 1076) during photo-oxidation of the poymers studed whereas the combined effect was additive during thermal oxidation. By contrast, the peroxide decornposers and chain-breaking antioxidant (Irganox 1076) which were effective synergists during thermal oxidation of LDPE· were antagonistic during photo-oxidation. The mechanisms of these processes are discussed.
Resumo:
This thesis deals with the integration of the manpower criterion with the strategic decision making processes of technological projects in developing countries. This integration is to be achieved by ensuring the involvement of the actors, who have relevant roles and responsibilities along the whole life cycle of the project, in the strategic decision making phases of the project. The relevance of the actors is ascertained by the use of a responsibility index which relates their responsibility to the project's constituent stages. In the context of a technological project in a typical centrally-planned developing environment, the actors are identified as Arbiters, Planners, Implementors and Operators and their roles, concerns and objectives are derived. In this context, the actors are usually government and non-government organisations. Hence, decision making will involve multiple agencies as well as multiple criteria. A methodology covering the whole decision-making process, from options generation to options selection, and adopting Saaty's Analytical Hierarchy Process as an operational tool is proposed to deal with such multiple-criteria, multipleagency decision situations. The methodology is intended to integrate the consideration of the relevant criteria, the prevailing environmental and policy factors, and the concerns and objectives of the relevant actors into a unifying decision-making process which strives to facilitate enlightened decision making and to enhance learning and interaction. An extensive assessment of the methodology's feasibility, based on a specific technological project within the Iraqi oil industry is included, and indicates that the methodology should be both useful and implementable.
Resumo:
Particulate solids are complex redundant systems which consist of discrete particles. The interactions between the particles are complex and have been the subject of many theoretical and experimental investigations. Invetigations of particulate material have been restricted by the lack of quantitative information on the mechanisms occurring within an assembly. Laboratory experimentation is limited as information on the internal behaviour can only be inferred from measurements on the assembly boundary, or the use of intrusive measuring devices. In addition comparisons between test data are uncertain due to the difficulty in reproducing exact replicas of physical systems. Nevertheless, theoretical and technological advances require more detailed material information. However, numerical simulation affords access to information on every particle and hence the micro-mechanical behaviour within an assembly, and can replicate desired systems. To use a computer program to numerically simulate material behaviour accurately it is necessary to incorporte realistic interaction laws. This research programme used the finite difference simulation program `BALL', developed by Cundall (1971), which employed linear spring force-displacement laws. It was thus necessary to incorporate more realistic interaction laws. Therefore, this research programme was primarily concerned with the implementation of the normal force-displacement law of Hertz (1882) and the tangential force-displacement laws of Mindlin and Deresiewicz (1953). Within this thesis the contact mechanics theories employed in the program are developed and the adaptations which were necessary to incorporate these laws are detailed. Verification of the new contact force-displacement laws was achieved by simulating a quasi-static oblique contact and single particle oblique impact. Applications of the program to the simulation of large assemblies of particles is given, and the problems in undertaking quasi-static shear tests along with the results from two successful shear tests are described.
Resumo:
Background Yellow filters are sometimes recommended to people with low vision. Our aim was investigate the effects of three commercial yellow filters on visual acuity and contrast sensitivity (with and without glare) and reading (without glare) under conditions of forward light scatter (FLS). Method Fifty-five healthy subjects were assessed with Corning Photochromic Filters (CPFs) 450, 511 and 527 and a filter producing FLS. The effects on log MAR visual acuity, Pelli–Robson contrast sensitivity with and without glare, and reading (measured with MNRead charts) without glare were determined. Results Statistically significant differences were found between the overall effect of glare and between CPFs for visual acuity and contrast sensitivity. A gradual decline in visual acuity, contrast sensitivity and reading with increasing CPF absorption was noted. Conclusion Effects of CPF450, 511, 527 on visual acuity, contrast sensitivity and reading under conditions of FLS were negative but not clinically significant.
Resumo:
Objectives and Methods: Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. Results: The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. Conclusions: No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable. © 2013 Contact Lens Association of Ophthalmologists.
Resumo:
The present study explores strategies used to legitimize the transfer of organizational practices in a situation of institutional upheaval. We apply the logic of social action (Risse, 2000) to analyze the effectiveness of consequence-based action and communication-based action, in terms of higher coordination, lower conflict, and overall higher economic performance. Consequence-based legitimation is obtained by using a system of distributor incentives tied to performance of specific tasks, while communicative legitimation can be achieved by recommendations and warnings. Our setting is an export channel to European emerging economies. Our results indicate that in the absence of legitimacy, as manifested in discretionary legal enforcement, consequence-based legitimation is more effective than communicative legitimation in reducing conflict, increasing coordination, and ultimately in improving the performance of the export dyad. © 2014 Elsevier Inc.
Resumo:
Aim: To determine the dynamic emitted temperature changes of the anterior eye during and immediately after wearing different materials and modalities of soft contact lenses. Method: A dynamic, non-contact infrared camera (Thermo-Tracer TH7102MX, NEC San-ei) was used to record the ocular surface temperature (OST) in 48 subjects (mean age 21.7 ± 1.9 years) wearing: lotrafilcon-A contact lenses on a daily wear (LDW; n = 8) or continuous wear (LCW; n = 8) basis; balafilcon-A contact lenses on a daily wear (BDW; n = 8) or continuous wear (BCW; n = 8) basis; etafilcon-A contact lenses on a daily disposable regimen (EDW; n = 8); and no lenses (controls; n = 8). OST was measured continuously five times, for 8 s after a blink, following a minimum of 2 h wear and immediately following lens removal. Absolute temperature, changes in temperature post-blink and the dynamics of temperature changes were calculated. Results: OST immediately following contact lens wear was significantly greater compared to non-lens wearers (37.1 ± 1.7 °C versus 35.0 ± 1.1 °C; p < 0.005), predominantly in the LCW group (38.6 ± 1.0 °C; p < 0.0001). Lens surface temperature was highly correlated (r = 0.97) to, but lower than OST (by -0.62 ± 0.3 °C). There was no difference with modality of wear (DW 37.5 ± 1.6 °C versus CW 37.8 ± 1.9 °C; p = 0.63), but significant differences were found between etafilcon A and silicone hydrogel lens materials (35.3 ± 1.1 °C versus 37.5 ± 1.5 °C; p < 0.0005). Ocular surface cooling following a blink was not significantly affected by contact lens wear with (p = 0.07) or without (p = 0.47) lenses in situ. Conclusions: Ocular surface temperature is greater with hydrogel and greater still with silicone hydrogel contact lenses in situ, regardless of modality of wear. The effect is likely to be due to the thermal transmission properties of a contact lens. © 2004 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.