30 resultados para batch fermentation
Resumo:
A review of the literature of work carried out on dextransucrase production, purification, immobilization and reactions has been carried out. A brief review has also been made of the literature concerning general enzyme biotechnology and fermentation technology. Fed-batch fermentation of the bacteria Leuconostoc mesenteroides NRRL B512 (F) to produce dextransucrase has formed the major part of this research. Aerobic and anaerobic fermentations have been studied using a 16 litre New Brunswick fermenter which has a 3-12 litre working volume. The initial volume of broth used in the studies was 6 litres. The results of the fed-batch fermentations showed for the first time that yields of dextransucrase are much higher under the anaerobic conditions than during the aerobic fermentations. Dextransucrase containing 300-350 DSU/cm3 of enzyme activity has been obtained during the aerobic fermentations, while in the anaerobic fermentations, enzyme yields containing 450-500 DSU/cm3 have been obtained routinely. The type of yeast extract used in the fermentation medium has been found to have significant effects on enzyme yield. Of the different types studied, the Gistex Standard was found to be the type that favoured the highest enzyme production. Studies have also been carried out on the effect of agitation rate and antifoam on the enzyme production during the anaerobic experiments. Agitation rates of up to 600 rpm were found not to affect the enzyme yield, however, the presence of antifoam in the medium led to a significant reduction in enzyme activity (less than 300 DSU/cm3). Scale-up of the anaerobic fermentations has been performed at up to the 1000 litre level with enzyme yields containing more than 400 DSU/cm3 of activity being produced. Some of the enzyme produced at this scale was used for the first time to produce dextran on an industrial scale via the enzyme route, with up to 99% conversion of sucrose to dextran being obtained. An attempt has been made at continuous dextransucrase production. Cell washout was observed to occur at dilution rates of greater than 0.4 h-1. Dextransucrase containing up to 25 DSU/cm3/h has been produced continuously.
Resumo:
The available literature concerning dextransucrase and dextran production and purification has been reviewed along with the reaction mechanisms of the enzyme. A discussion of basic fermentation theory is included, together with a brief description of bioreactor hydrodynamics and general biotechnology. The various fermenters used in this research work are described in detail, along with the various experimental techniques employed. The micro-organism Leuconostoc mesenteroides NRRL B512 (F) secretes dextransucrase in the presence of an inducer, sucrose, this being the only known inducer of the enzyme. Dextransucrase is a growth related product and a series of fed-batch fermentations have been carried out to extend the exponential growth phase of the organism. These experiments were carried out in a number of different sized vessels, ranging in size from 2.5 to 1,000 litres. Using a 16 litre vessel, dextransucrase activities in excess of 450 DSU/cm3 (21.67 U/cm3) have been obtained under non-aerated conditions. It has also been possible to achieve 442 DSU/cm3 (21.28 U/cm3) using the 1,000 litre vessel, although this has not been done consistently. A 1 litre and a 2.5 litre vessel were used for the continuous fermentations of dextransucrase. The 2.5 litre vessel was a very sophisticated MBR MiniBioreactor and was used for the majority of continuous fermentations carried out. An enzyme activity of approximately 108 DSU/cm3 (5.20 U/cm3) was achieved at a dilution rate of 0.50 h-1, which corresponds to the maximum growth rate of the cells under the process conditions. A number of continuous fermentations were operated for prolonged periods of time, with experimental run-times of up to 389 h being recorded without any incidence of contamination. The phenomenon of enzyme enhancement on hold-up of up to 100% was also noted during these fermentations, with dextransucrase of activity 89.7 DSU/cm3 (4.32 U/cm3) being boosted to 155.7 DSU/cm3 (7.50 U/cm3) following 24 hours of hold-up. These findings support the recommendation of a second reactor being placed in series with the existing vessel.
Resumo:
Several fermentation methods for the production of the enzyme dextransucrase have been employed. The theoretical aspects of these fermentation techniques have been given in the early chapters of this thesis together with a brief overview of enzyme biotechnology. A literature survey on cell recycle fermentation has been carried out followed by a survey report on dextransucrase production, purification and the reaction mechanism of dextran biosynthesis. The various experimental apparatus as employed in this research are described in detail. In particular, emphasis has been given to the development of continuous cell recycle fermenters. On the laboratory scale, fed-batch fermentations under anaerobic low agitation conditions resulted in dextransucrase activities of about 450 DSU/cm3 which are much higher than the yields reported in the literature and obtained under aerobic conditions. In conventional continuous culture the dilution rate was varied in the range between 0.375 h-1 to 0.55 h-1. The general pattern observed from the data obtained was that the enzyme activity decreased with increase in dilution rate. In these experiments the maximum value of enzyme activity was ∼74 DSU/cm3. Sparging the fermentation broth with CO2 in continuous culture appears to result in a decrease in enzyme activity. In continuous total cell recycle fermentations high steady state biomass levels were achieved but the enzyme activity was low, in the range 4 - 27 DSU/cm3. This fermentation environment affected the physiology of the microorganism. The behaviour of the cell recycle system employed in this work together with its performance and the factors that affected it are discussed in the relevant chapters. By retaining the whole broth leaving a continuous fermenter for between 1.5 - 4 h under controlled conditions, the enzyme activity was enhanced with a certain treatment from 86 DSU/cm3 to 180 DSU/cm3 which represents a 106% increase over the enzyme activity achieved by a steady-state conventional chemostat. A novel process for dextran production has been proposed based on the findings of this latter part of the experimental work.
Resumo:
The purpose of the work reported here was to investigate the application of neural control to a common industrial process. The chosen problem was the control of a batch distillation. In the first phase towards deployment, a complex software simulation of the process was controlled. Initially, the plant was modelled with a neural emulator. The neural emulator was used to train a neural controller using the backpropagation through time algorithm. A high accuracy was achieved with the emulator after a large number of training epochs. The controller converged more rapidly, but its performance varied more widely over its operating range. However, the controlled system was relatively robust to changes in ambient conditions.
Inventory parameter management and focused continuous improvement for repetitive batch manufacturers
Resumo:
What this thesis proposes is a methodology to assist repetitive batch manufacturers in the adoption of certain aspects of the Lean Production principles. The methodology concentrates on the reduction of inventory through the setting of appropriate batch sizes, taking account of the effect of sequence dependent set-ups and the identification and elimination of bottlenecks. It uses a simple Pareto and modified EBQ based analysis technique to allocate items to period order day classes based on a combination of each item's annual usage value and set-up cost. The period order day classes the items are allocated to are determined by the constraints limits in the three measured dimensions, capacity, administration and finance. The methodology overcomes the limitations associated with MRP in the area of sequence dependent set-ups, and provides a simple way of setting planning parameters taking this effect into account by concentrating on the reduction of inventory through the systematic identification and elimination of bottlenecks through set-up reduction processes, so allowing batch sizes to reduce. It aims to help traditional repetitive batch manufacturers in a route to continual improvement by: Highlighting those areas where change would bring the greatest benefits. Modelling the effect of proposed changes. Quantifying the benefits that could be gained through implementing the proposed changes. Simplifying the effort required to perform the modelling process. It concentrates on increasing flexibility through managed inventory reduction through rationally decreasing batch sizes, taking account of sequence dependent set-ups and the identification and elimination of bottlenecks. This was achieved through the development of a software modelling tool, and validated through a case study approach.
Resumo:
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which lias distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.
Resumo:
The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
A comparison of batch and continuous chromatography equipment for the separation of organic mixtures
Resumo:
The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.
Resumo:
The focus of this research was defined by a poorly characterised filtration train employed to clarify culture broth containing monoclonal antibodies secreted by GS-NSO cells: the filtration train blinded unpredictably and the ability of the positively charged filters to adsorb DNA from process material was unknown. To direct the development of an assay to quantify the ability of depth filters to adsorb DNA, the molecular weight of DNA from a large-scale, fed-batch, mammalian cell culture vessel was evaluated as process material passed through the initial stages of the purification scheme. High molecular weight DNA was substantially cleared from the broth after passage through a disc stack centrifuge and the remaining low molecular weight DNA was largely unaffected by passage through a series of depth filters and a sterilising grade membrane. Removal of high molecular weight DNA was shown to be coupled with clarification of the process stream. The DNA from cell culture supernatant showed a pattern of internucleosomal cleavage of chromatin when fractionated by electrophoresis but the presence of both necrotic and apoptotic cells throughout the fermentation meant that the origin of the fragmented DNA could not be unequivocally determined. An intercalating fluorochrome, PicoGreen, was elected for development of a suitable DNA assay because of its ability to respond to low molecular weight DNA. It was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing pertinent monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 89.0 % of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. Application of the fluorescence based assay resulted in characterisation of the physical parameters governing adsorption of DNA by various positively charged depth filters and membranes in test solutions and the DNA adsorption profile of the manufacturing scale filtration train. Buffers that reduced or neutralised the depth filter or membrane charge, and those that impeded hydrophobic interactions were shown to affect their operational capacity, demonstrating that DNA was adsorbed by a combination of electrostatic and hydrophobic interactions. Production-scale centrifugation of harvest broth containing therapeutic protein resulted in the reduction of total DNA in the process stream from 79.8 μg m1-1 to 9.3 μg m1-1 whereas the concentration of DNA in the supernatant of pre-and post-filtration samples had only marginally reduced DNA content: from 6.3 to 6.0 μg m1-1 respectively. Hence the filtration train was shown to ineffective in DNA removal. Historically, blinding of the depth filters had been unpredictable with data such as numbers of viable cells, non-viable cells, product titre, or process shape (batch, fed-batch, or draw and fill) failing to inform on the durability of depth filters in the harvest step. To investigate this, key fouling contaminants were identified by challenging depth filters with the same mass of one of the following: viable healthy cells, cells that had died by the process of apoptosis, and cells that had died through the process of necrosis. The pressure increase across a Cuno Zeta Plus 10SP depth filter was 2.8 and 16.5 times more sensitive to debris from apoptotic and necrotic cells respectively, when compared to viable cells. The condition of DNA released into the culture broth was assessed. Necrotic cells released predominantly high molecular weight DNA in contrast to apoptotic cells which released chiefly low molecular weight DNA. The blinding of the filters was found to be largely unaffected by variations in the particle size distribution of material in, and viscosity of, solutions with which they were challenged. The exceptional response of the depth filters to necrotic cells may suggest the cause of previously noted unpredictable filter blinding whereby a number of necrotic cells have a more significant impact on the life of a depth filter than a similar number of viable or apoptotic cells. In a final set of experiments the pressure drop caused by non-viable necrotic culture broths which had been treated with DNase I or benzonase was found to be smaller when compared to untreated broths: the abilities of the enzyme treated cultures to foul the depth filter were reduced by 70.4% and 75.4% respectively indicating the importance of DNA in the blinding of the depth filter studied.