40 resultados para Visual Attention
Resumo:
In this thesis the relationship between visual attention, affordance and action was investigated using a combination of neuroimaging and behavioural studies. Neuronal activity and movement construction were assessed when individuals passively viewed or produced action towards stimuli varying in their affordance and/or attentional attributes. The main findings were: (i) the passive perception of both object and abstract visual patterns was associated with decreased alpha and/or beta activity in sensori-motor cortex, occipito-temporal cortex and cerebellum. These are brain regions associated with the planning and production of visually guided action; (ii) for object patterns, decreased alpha and beta activity was also observed in regions of superior parietal and premotor cortex. These regions contain neurons argued to be essential for matching hand kinematics with manipulate objects; and (iii) in both control participants and a deafferented individual, studies of planned and unplanned pointing manoeuvres revealed that the attentional bias of a stimulus was critical for fast, efficient action production whereas the affordance bias was critical in determining end-point accuracy. Taken together, these findings demonstrate that affordance is not a necessary prerequisite for the potential of motor codes. Rather, affordance enables the construction of motor responses that reflect object functionality and/or manipulability. They further demonstrate that visual attention is associated with the potentiation of motor codes. Indeed, directed visual attention would appear critical for speeded responses. These findings provide new insights into the roles of directed visual attention and affordance upon action.
Resumo:
A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.
Resumo:
Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets
Resumo:
Two eye-tracking studies and an offline experiment explored the effect of central shelf location on attention and choice. Investigation of the attention process revealed that the central gaze cascade effect, progressively increasing attention focused on the central option predicted choice.
Resumo:
We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the corner elements used to form the Kanizsa triangle were rotated to negate the formation of illusory contours. The MEG data were analysed using synthetic aperture magnetometry (SAM) to enable the spatial localisation of task-related oscillatory power changes within specific frequency bands, and the time-course of activity within given locations-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. In contrast to earlier studies, we did not find increases in gamma activity (> 30 Hz) to illusory shapes, but instead a decrease in 10–30 Hz activity approximately 200 ms after stimulus presentation. The reduction in oscillatory activity was primarily evident within extrastriate areas, including the lateral occipital complex (LOC). Importantly, this same pattern of results was evident for each stimulus type. Our results further highlight the importance of the LOC and a network of posterior brain regions in processing visual contours, be they illusory or real in nature. The similarity of the results for both real and illusory contours, however, leads us to conclude that the broadband (< 30 Hz) decrease in power we observed is more likely to reflect general changes in visual attention than neural computations specific to processing visual contours.
Resumo:
Background: The binocular Esterman visual field test (EVFT) is the current visual field test for driving in the UK. Merging of monocular field tests (Integrated Visual Field, IVF) has been proposed as an alternative for glaucoma patients. Aims: To examine the level of agreement between the EVFT and IVF for patients with binocular paracentral scotomata, caused by either ophthalmological or neurological conditions, and to compare outcomes with useful field of view (UFOV) performance, a test of visual attention thought to be important in driving. Methods: 60 patients with binocular paracentral scotomata but normal visual acuity (VA) were recruited prospectively. Subjects completed and were classified as “pass” or “fail” for the EVFT, IVF and UFOV. Results: Good agreement occurred between the EVFT and IVF in classifying subjects as “pass” or “fail” (kappa?=?0.84). Classifications disagreed for four subjects with paracentral scotomata of neurological origin (three “passed” IVF yet “failed” EVFT). Mean UFOV scores did not differ between those who “passed” and those who “failed” both visual field tests (p?=?0.11). Agreement between the visual field tests and UFOV was limited (EVFT kappa?=?0.22, IVF kappa 0.32). Conclusions: Although the IVF and EVFT agree well in classifying visual fields with regard to legal fitness to drive in the UK, the IVF “passes” some individuals currently classed as unfit to drive due to paracentral scotomata of non-glaucomatous origin. The suitability of the UFOV for assessing crash risk in those with visual field loss is questionable.
Resumo:
Difficulties in visual attention are increasingly being linked to dyslexia. To date, the majority of studies have inferred functionality of attention from response times to stimuli presented for an indefinite duration. However, in paradigms that use reaction times to investigate the ability to orient attention, a delayed reaction time could also indicate difficulties in signal enhancement or noise exclusion once oriented. Thus, in order to investigate attention modulation and visual crowding effects in dyslexia, this study measured stimulus discrimination accuracy to rapidly presented displays. Adults with dyslexia (AwD) and controls discriminated the orientation of a target in an array of different numbers of - and differently spaced - vertically orientated distractors. Results showed that AwD: were disproportionately impacted by (i) close spacing and (ii) increased numbers of stimuli, (iii) did use pre-cues to modulate attention, but (iv) used cues less successfully to counter effects of increasing numbers of distractors. A greater dependence on pre-cues, larger effects of crowding and the impact of increased numbers of distractors all correlated significantly with measures of literacy. These findings extend previous studies of visual crowding of letters in dyslexia to non-complex stimuli. Overall, AwD do not use cues less, but they do use cues less successfully. We conclude that visual attention is an important factor to consider in the aetiology of dyslexia. The results challenge existing theoretical accounts of visual attention deficits, which alone are unable to comprehensively explain the pattern of findings demonstrated here.
Resumo:
Previous research has shown that adults with dyslexia (AwD) are disproportionately impacted by close spacing of stimuli and increased numbers of distractors in a visual search task compared to controls [1]. Using an orientation discrimination task, the present study extended these findings to show that even in conditions where target search was not required: (i) AwD had detrimental effects of both crowding and increased numbers of distractors; (ii) AwD had more pronounced difficulty with distractor exclusion in the left visual field and (iii) measures of crowding and distractor exclusion correlated significantly with literacy measures. Furthermore, such difficulties were not accounted for by the presence of covarying symptoms of ADHD in the participant groups. These findings provide further evidence to suggest that the ability to exclude distracting stimuli likely contributes to the reported visual attention difficulties in AwD and to the aetiology of literacy difficulties. The pattern of results is consistent with weaker and asymmetric attention in AwD.
Resumo:
This thesis investigates the visual deficits associated with developmental dyslexia, particularly that of visual attention. Visual attention has previously been investigated in a wide array of behavioural and psychophysical (amongst others) studies but not many have produced consistent findings. Attention processes are believed to play an integral part in depicting the overall "extent" of reading deficits in dyslexia, so it was of paramount importance to aim at such attention mechanisms in this research. The experiments in this thesis focused on signal enhancement and noise (distractor) exclusion. Given the flexibility of the visual search paradigms employed in this research, factors such as visual crowding and attention distribution was also investigated. The experiments systematically manipulated noise (by increasing distractor count, i.e. set-size), crowding (varying the spacing between distractors), attention allocation (use of peripheral cues to direct attention), and attention distribution (influence of one visual field over the other), all of which were tied to a critical factor, the "location/spatial/decisional uncertainty". Adults with dyslexia were: (i) able to modulate attention appropriately using peripheral pre-cues, (ii) severely affected by crowding, and (iii) unable to counteract increased set-sizes when post or un-cued, the latter signifying poor distractor (noise) suppression. By controlling for location uncertainty, the findings confirmed that adults with dyslexia were yet again affected by crowding and set-size, in addition to an asymmetric attention distribution. Confounding effects of ADHD symptoms did not explain a significant independent variance in performance, suggesting that the difficulty shown by adult dyslexics were not accounted for by co-morbid ADHD. Furthermore, the effects of crowding, set-size and asymmetric attention correlated significantly with literacy, but not ADHD measures. It is believed that a more diffuse and an asymmetric attention system (in dyslexia) to be the limiting factor concerning noise exclusion and attention distribution. The findings from this thesis add to the current understanding of the potential role of deficits in visual attention in dyslexia and in the literacy difficulties experienced by this population.
Resumo:
The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention.
Resumo:
Visual perception is dependent not only on low-level sensory input but also on high-level cognitive factors such as attention. In this paper, we sought to determine whether attentional processes can be internally monitored for the purpose of enhancing behavioural performance. To do so, we developed a novel paradigm involving an orientation discrimination task in which observers had the freedom to delay target presentation--by any amount required--until they judged their attentional focus to be complete. Our results show that discrimination performance is significantly improved when individuals self-monitor their level of visual attention and respond only when they perceive it to be maximal. Although target delay times varied widely from trial-to-trial (range 860 ms-12.84 s), we show that their distribution is Gaussian when plotted on a reciprocal latency scale. We further show that the neural basis of the delay times for judging attentional status is well explained by a linear rise-to-threshold model. We conclude that attentional mechanisms can be self-monitored for the purpose of enhancing human decision-making processes, and that the neural basis of such processes can be understood in terms of a simple, yet broadly applicable, linear rise-to-threshold model.
Resumo:
Behavioural studies on normal and brain-damaged individuals provide convincing evidence that the perception of objects results in the generation of both visual and motor signals in the brain, irrespective of whether or not there is an intention to act upon the object. In this paper we sought to determine the basis of the motor signals generated by visual objects. By examining how the properties of an object affect an observer's reaction time for judging its orientation, we provide evidence to indicate that directed visual attention is responsible for the automatic generation of motor signals associated with the spatial characteristics of perceived objects.
Resumo:
The 'attentional blink' (AB) reflects a limitation in the ability to identify multiple items in a stream of rapidly presented information. Repetitive transcranial magnetic stimulation (rTMS), applied to a site over the right posterior parietal cortex, reduced the magnitude of the AB to visual stimuli, whilst no effect of rTMS was found when stimulation took place at a control site. The data confirm that the posterior parietal cortex may play a critical role in temporal as well as spatial aspects of visual attention.
Resumo:
Consumers' tendency to choose the option in the center of an array and the process underlying this effect is explored. Findings from two eye-tracking studies suggest that brands in the horizontal center receive more visual attention. They are more likely to be chosen. Investigation of the attention process revealed an initial central fixation bias, a tendency to look first at the central option, and a central gaze cascade effect, progressively increasing attention focused on the central option right prior to decision. Only the central gaze cascade effect was related to choice. An offline study with tangible products demonstrated that the centrally located item within a product category is chosen more often, even when it is not placed in the center of the visual field. Despite widespread use, memory-based attention measures were not correlated with eye-tracking measures. They did not capture visual attention and were not related to choice. © 2012 by JOURNAL OF CONSUMER RESEARCH, Inc.
Resumo:
Both animal and human studies suggest that the efficiency with which we are able to grasp objects is attributable to a repertoire of motor signals derived directly from vision. This is in general agreement with the long-held belief that the automatic generation of motor signals by the perception of objects is based on the actions they afford. In this study, we used magnetoencephalography (MEG) to determine the spatial distribution and temporal dynamics of brain regions activated during passive viewing of object and non-object targets that varied in the extent to which they afforded a grasping action. Synthetic Aperture Magnetometry (SAM) was used to localize task-related oscillatory power changes within specific frequency bands, and the time course of activity within given regions-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. Both single subject and group-averaged data on the spatial distribution of brain activity are presented. We show that: (i) significant reductions in 10-25 Hz activity within extrastriate cortex, occipito-temporal cortex, sensori-motor cortex and cerebellum were evident with passive viewing of both objects and non-objects; and (ii) reductions in oscillatory activity within the posterior part of the superior parietal cortex (area Ba7) were only evident with the perception of objects. Assuming that focal reductions in low-frequency oscillations (< 30 Hz) reflect areas of heightened neural activity, we conclude that: (i) activity within a network of brain areas, including the sensori-motor cortex, is not critically dependent on stimulus type and may reflect general changes in visual attention; and (ii) the posterior part of the superior parietal cortex, area Ba7, is activated preferentially by objects and may play a role in computations related to grasping. © 2006 Elsevier Inc. All rights reserved.