26 resultados para Three laser heterodyne system
Resumo:
The devising of a general engineering theory of multifunctional diagnostic systems for non-invasive medical spectrophotometry is an important and promising direction of modern biomedical engineering. We aim in this study to formalize in scientific engineering terms objectives for multifunctional laser non-invasive diagnostic system (MLNDS). The structure-functional model as well as a task-function of generalized MLNDS was formulated and developed. The key role of the system software for MLNDS general architecture at steps of ideological-technical designing has been proved. The basic principles of block-modules composition of MLNDS hardware are suggested as well. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.
Resumo:
Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.
Resumo:
We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.
Resumo:
Laser trackers have been widely used in many industries to meet increasingly high accuracy requirements. In laser tracker measurement, it is complex and difficult to perform an accurate error analysis and uncertainty evaluation. This paper firstly reviews the working principle of single beam laser trackers and state-of- The- Art of key technologies from both industrial and academic efforts, followed by a comprehensive analysis of uncertainty sources. A generic laser tracker modelling method is formulated and the framework of the virtual tracker is proposed. The VLS can be used for measurement planning, measurement accuracy optimization and uncertainty evaluation. The completed virtual laser tracking system should take all the uncertainty sources affecting coordinate measurement into consideration and establish an uncertainty model which will behave in an identical way to the real system. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This thesis is concerned with the effect of polymer structure on miscibility of the three component blends based on poly(lactic acid) (PLA) with using blending techniques. The examination of novel PLA homologues (pre-synthesised poly(a-esters)), including a range of aliphatic and aromatic poly(a-esters) is an important aspect of the work. Because of their structural simplicity and similarity to PLA, they provide an ideal system to study the effect of polyester structures on the miscibility of PLA polymer blends. The miscibility behaviour of the PLA homologues is compared with other aliphatic polyesters (e.g. poly(e-caprolactone) (PCL), poly(hydroxybutyrate hydroxyvalerate) (P(HB-HV)), together with a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB)). The work started with the exploration the technique used for preliminary observation of the miscibility of blends referred to as “a rapid screening method” and then the miscibility of binary blends was observed and characterised by percent transmittance together with the Coleman and Painter miscibility approach. However, it was observed that symmetrical structures (e.g. a1(dimethyl), a2(diethyl)) promote the well-packing which restrict their chains from intermingling into poly(L-lactide) (PLLA) chains and leads the blends to be immiscible, whereas, asymmetrical structures (e.g. a4(cyclohexyl)) behave to the contrary. a6(chloromethyl-methyl) should interact well with PLLA because of the polar group of chloride to form interactions, but it does not. It is difficult to disrupt the helical structure of PLLA. PLA were immiscible with PCL, P(HB-HV), or compatibiliser (e.g. G40, LLA-co-PCL), but miscible with CAB which is a hydrogen-bonded polymer. However, these binary blends provided a useful indication for the exploration the novel three component blends. In summary, the miscibility of the three-component blends are miscible even if only two polymers are miscible. This is the benefit for doing the three components blend in this thesis, which is not an attempt to produce a theoretical explanation for the miscibility of three components blend system.
Resumo:
We present an ultra-long Raman fibre laser amplified system which, with only a single pump wavelength, provides comparable gain flatness and broader spectral bandwidth than a conventional gain flattened C-band EDFA. A 20x42.7Gb/s experiment shows compatibility with DWDM systems. ©2010 IEEE.
Resumo:
This paper details a method of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.
Resumo:
A potential low cost novel sensing scheme for monitoring absolute strain is demonstrated. The scheme utilizes a synthetic heterodyne interrogation technique working in conjunction with a linearly chirped, sinusoidally tapered, apodized Bragg grating sensor. The interrogation technique is relatively simple to implement in terms of the required optics and the peripheral electronics. This scheme generates an output signal that has a quasi-linear response to absolute strain with a static strain resolution of ~±20 με and an operating range of ~1000 με.
Resumo:
Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.
Resumo:
In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.
Resumo:
The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.